Skip to content

Commit 9ff44f0

Browse files
committed
More on chapter 5
1 parent 857d91c commit 9ff44f0

File tree

1 file changed

+101
-8
lines changed

1 file changed

+101
-8
lines changed

SIAMFANLCh5.ipynb

+101-8
Original file line numberDiff line numberDiff line change
@@ -50,7 +50,7 @@
5050
},
5151
{
5252
"cell_type": "code",
53-
"execution_count": 8,
53+
"execution_count": 4,
5454
"metadata": {},
5555
"outputs": [],
5656
"source": [
@@ -507,7 +507,7 @@
507507
},
508508
{
509509
"cell_type": "code",
510-
"execution_count": 9,
510+
"execution_count": 5,
511511
"metadata": {},
512512
"outputs": [
513513
{
@@ -561,7 +561,7 @@
561561
},
562562
{
563563
"cell_type": "code",
564-
"execution_count": 10,
564+
"execution_count": 6,
565565
"metadata": {},
566566
"outputs": [
567567
{
@@ -757,15 +757,108 @@
757757
"\\lambda \\le 1 - \\sqrt{1-c} < 1.\n",
758758
"$$\n",
759759
"Hence $\\calf'(H)$ is nonsingular for $0 < c < 1$ on the lower branch.\n",
760-
"This also proves the norm estimate from Chapter __4__.\n"
760+
"This also proves the norm estimate from Chapter __4__.\n",
761+
" \n",
762+
"For $c=1$, $\\calf'(H)$ is singular with a one-dimensional null space.\n",
763+
"To complete the analysis of the singularity we need to make the dependence\n",
764+
"in $c$ explicit and write the equation as\n",
765+
"$$\n",
766+
"\\calf(H, c) = 0.\n",
767+
"$$\n",
768+
"We let $\\calf'_H$ be the\n",
769+
"Frechet derivative in $H$ and\n",
770+
"$\\calf'_c(H,c)$ be the derivative in $c$. At a solution\n",
771+
"$$\n",
772+
"\\calf'_c(H,c) = - H^2 \\frac{1}{2} \\call H.\n",
773+
"$$\n",
774+
"and so, at $c=1$, using the equation.\n",
775+
"$$\n",
776+
"\\calf'_c(H,1) = -H^2( H - 1).\n",
777+
"$$\n",
778+
" \n",
779+
"The singularity at $c=1$ is a\n",
780+
"__simple fold__ <cite data-cite=\"herb\"><a href=\"siamfa.html#herb\">(Kel87)</cite>.\n",
781+
"This means that $\\calf'(H)$ has a null space\n",
782+
"of dimension 1 and that $\\calf'_c(H,1) \\not \\in {\\cal R}(\\calf'_H(H))$.\n",
783+
"Here $\\cal{R}$ denotes the range of an operator. In this case\n",
784+
"$$\n",
785+
"{\\cal R}(\\calf'_H(H)) = \\{ u \\in C[0,1] \\, | \\,\n",
786+
"\\int_0^1 u(\\nu) \\psi(\\nu) \\dnu = 0 \\},\n",
787+
"$$\n",
788+
"where $\\psi$ is the eigenfunction of $\\calf'_H(H)^*$, the adjoint of\n",
789+
"$\\calf'_H(H)$ corresponding to the zero eigenvalue. The reader can\n",
790+
"verify that, for $c=1$,\n",
791+
"$$\n",
792+
"\\psi(\\mu) = (\\calg'(H)^* \\psi)(\\nu) = \\frac{1}{2} \\int_0^1\n",
793+
"\\frac{\\nu}{\\nu+\\mu} H^2(\\nu) \\psi(\\nu) \\dnu\n",
794+
"$$\n",
795+
"is satisfied by $\\psi = H^{-1}$. Since $H \\ge 1$ and $\\calf'_c(H,1)$ does\n",
796+
"not change sign, $\\calf'_c(H,1)$ cannot be in the range\n",
797+
"of $\\calf'_H(H)$. We will show why this fact is important in the next\n",
798+
"section.\n",
799+
"\n"
761800
]
762801
},
763802
{
764-
"cell_type": "code",
765-
"execution_count": null,
803+
"cell_type": "markdown",
766804
"metadata": {},
767-
"outputs": [],
768-
"source": []
805+
"source": [
806+
"### Section 5.2.2: Continuation\n",
807+
"\n",
808+
"The object of continuation methods is to solve\n",
809+
"a parameter dependent set of nonlinear equations\n",
810+
"$$\n",
811+
"\\mf(\\vx, \\lambda) = 0.\n",
812+
"$$\n",
813+
"The output is a\n",
814+
"__solution arc__\n",
815+
"or\n",
816+
"__solution path__ \n",
817+
"$$\n",
818+
"\\{ \\vx(\\lambda) \\, | \\, \\mf(\\vx(\\lambda), \\lambda) = 0,\n",
819+
"\\lambda_0 \\le \\lambda \\le \\lambda_{max} \\}.\n",
820+
"$$\n",
821+
"The solution arc for the H-equation is a simple arc\n",
822+
"with no bifurcations. Because of this we can use a\n",
823+
"straightforward path following algorithm. The\n",
824+
"objective of this section is to show how a nonlinear solver\n",
825+
"can be modified in a simple way to resolve singularities\n",
826+
"such as the one for the $H$-equation at $c=1$.\n",
827+
"\n",
828+
"We have seen other examples\n",
829+
"of parameter-dependent nonlinear equations in\n",
830+
"the buckling beam problem from Chapters __2__ and __3__\n",
831+
"and the cubic polynomial example\n",
832+
"in Chapter __1__. These examples have\n",
833+
"pitchfork bifurcations <cite data-cite=\"herb\"><a href=\"siamfa.html#herb\">(Kel87)</cite>\n",
834+
"and most path following codes\n",
835+
"<cite data-cite=\"doedel\"><a href=\"siamfa.html#doedell\">(Doe97)</cite>,\n",
836+
"<cite data-cite=\"govaerts\"><a href=\"siamfa.html#govaerts\">(Gov00)</cite>,\n",
837+
"<cite data-cite=\"kuznetsov\"><a href=\"siamfa.html#kuznetsov\">(Kuz98)</cite>,\n",
838+
"<cite data-cite=\"loca\"><a href=\"siamfa.html#loca\">(SBRP<sup>+</sup>02)</cite>,\n",
839+
"<cite data-cite=\"pitcon\"><a href=\"siamfa.html#pitcon\">(Rhe86)</cite>,\n",
840+
"<cite data-cite=\"bifkit\"><a href=\"siamfa.html#bifkit\">(Vel20)</cite>,\n",
841+
"have machinery to detect intersecting solution arcs and\n",
842+
"follow the different branches. Those methods are beyond\n",
843+
"the scope of this book. The Julia package __BifurcationKit.jl__\n",
844+
"<cite data-cite=\"bifkit\"><a href=\"siamfa.html#bifkit\">(Vel20)</cite>\n",
845+
"is quite complete.\n",
846+
" \n",
847+
"One simple approach to computing a solution path would be to\n",
848+
"identify a solution $\\vx(\\lambda_0)$ for a particular\n",
849+
"value of $\\lambda$ and then increment $\\lambda$ by a small amount\n",
850+
"and use Newton's method with an initial iterate from the previous\n",
851+
"solution to compute the solution for the next step. In the\n",
852+
"case of the $H$-equation, where the parameter is $c$. One can\n",
853+
"use $c_0 = 0$ and $H \\equiv 1$ to begin the continuation.\n",
854+
"\n",
855+
"A candidate for the algorithm is __natural parameter continuation__\n",
856+
"where we increment the original parameter in the equation. Note that in\n",
857+
"the discussion in this section, as is common practice, the parameter is\n",
858+
"called $\\lambda$ in the context of a general method, but the actual\n",
859+
"name of the parameter ($c$ in the case of the H-equation) is used when\n",
860+
"talking about specific examples.\n"
861+
]
769862
},
770863
{
771864
"cell_type": "code",

0 commit comments

Comments
 (0)