Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add "label_area" attribute to classification.geojson #128

Closed
wants to merge 1 commit into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 17 additions & 12 deletions label_maker/label.py
Original file line number Diff line number Diff line change
@@ -128,9 +128,14 @@ def make_labels(dest_folder, zoom, country, classes, ml_type, bounding_box, spar
if ml_type == 'classification':
features = []
for tile, label in tile_results.items():
label_bool = [int(bool(l)) for l in label]
# if there are no classes, activate the background
if all(v == 0 for v in label_bool):
label_bool[0] = 1
feat = feature(Tile(*[int(t) for t in tile.split('-')]))
features.append(Feature(geometry=feat['geometry'],
properties=dict(label=label.tolist())))
properties=dict(label=label_bool,
label_area=label.tolist())))
json.dump(fc(features), open(op.join(dest_folder, 'classification.geojson'), 'w'))
elif ml_type == 'object-detection':
label_folder = op.join(dest_folder, 'labels')
@@ -159,7 +164,7 @@ def make_labels(dest_folder, zoom, country, classes, ml_type, bounding_box, spar
print('Writing {}'.format(label_file))
img.save(op.join(label_folder, label_file))


def _mapper(x, y, z, data, args):
"""Iterate over OSM QA Tiles and return a label for each tile

@@ -197,14 +202,15 @@ def _mapper(x, y, z, data, args):

if tile['osm']['features']:
if ml_type == 'classification':
class_counts = np.zeros(len(classes) + 1, dtype=np.int)
for i, cl in enumerate(classes):
ff = create_filter(cl.get('filter'))
class_counts[i + 1] = int(bool([f for f in tile['osm']['features'] if ff(f)]))
# if there are no classes, activate the background
if np.sum(class_counts) == 0:
class_counts[0] = 1
return ('{!s}-{!s}-{!s}'.format(x, y, z), class_counts)
class_areas = np.zeros(len(classes) + 1)
for feat in tile['osm']['features']:
for i, cl in enumerate(classes):
ff = create_filter(cl.get('filter'))
if ff(feat):
feat['geometry']['coordinates'] = _convert_coordinates(feat['geometry']['coordinates'])
geo = shape(feat['geometry'])
class_areas[i + 1] = geo.area
return ('{!s}-{!s}-{!s}'.format(x, y, z), class_areas)
elif ml_type == 'object-detection':
bboxes = _create_empty_label(ml_type, classes)
for feat in tile['osm']['features']:
@@ -305,7 +311,7 @@ def _tile_results_summary(ml_type, classes):
cl_tiles = len([l for l in labels if len(list(filter(_bbox_class(i + 1), l)))]) # pylint: disable=cell-var-from-loop
print('{}: {} features in {} tiles'.format(cl.get('name'), cl_features, cl_tiles))
elif ml_type == 'classification':
class_tile_counts = list(np.sum(labels, axis=0))
class_tile_counts = list(np.count_nonzero(labels, axis=0))
for i, cl in enumerate(classes):
print('{}: {} tiles'.format(cl.get('name'), int(class_tile_counts[i + 1])))
elif ml_type == 'segmentation':
@@ -318,7 +324,6 @@ def _tile_results_summary(ml_type, classes):
def _create_empty_label(ml_type, classes):
if ml_type == 'classification':
label = np.zeros(len(classes) + 1, dtype=np.int)
label[0] = 1
return label
elif ml_type == 'object-detection':
return np.empty((0, 5), dtype=np.int)