Skip to content

Commit

Permalink
Fix skip of test_training_gradient_checkpointing
Browse files Browse the repository at this point in the history
19d58d3 has introduced a context manager to manage subtests of
test_training_gradient_checkpointing. However, test body was not
moved under the "with" statement. Thus, while tests are correctly
marked as skipped, test bodies were still executed. In some cases,
as with llama this caused attribute errors.

Fixes: huggingface#34722
Fixes: 19d58d3 ("Add MLLama (huggingface#33703)")
Signed-off-by: Dmitry Rogozhkin <[email protected]>
  • Loading branch information
dvrogozh committed Nov 14, 2024
1 parent 33eef99 commit a6d6139
Showing 1 changed file with 18 additions and 18 deletions.
36 changes: 18 additions & 18 deletions tests/test_modeling_common.py
Original file line number Diff line number Diff line change
Expand Up @@ -849,29 +849,29 @@ def check_training_gradient_checkpointing(self, gradient_checkpointing_kwargs=No
):
self.skipTest(reason=f"`supports_gradient_checkpointing` is False for {model_class.__name__}.")

config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.use_cache = False
config.return_dict = True
model = model_class(config)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.use_cache = False
config.return_dict = True
model = model_class(config)

model.to(torch_device)
model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=gradient_checkpointing_kwargs)
model.train()
model.to(torch_device)
model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=gradient_checkpointing_kwargs)
model.train()

# unfreeze additional layers
for p in model.parameters():
p.requires_grad_(True)
# unfreeze additional layers
for p in model.parameters():
p.requires_grad_(True)

optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
loss = model(**inputs).loss
loss.backward()
optimizer.step()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
loss = model(**inputs).loss
loss.backward()
optimizer.step()

for k, v in model.named_parameters():
if v.requires_grad:
self.assertTrue(v.grad is not None, f"{k} in {model_class.__name__} has no gradient!")
for k, v in model.named_parameters():
if v.requires_grad:
self.assertTrue(v.grad is not None, f"{k} in {model_class.__name__} has no gradient!")

def test_training(self):
if not self.model_tester.is_training:
Expand Down

0 comments on commit a6d6139

Please sign in to comment.