Skip to content

ENH: improve support for datetime columns #486

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 31 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
31 commits
Select commit Hold shift + click to select a range
aaf8818
ENH: deal properly with naive datetimes with arrow
theroggy Oct 17, 2024
3e463a1
Add more testcases, also for tz datetimes
theroggy Oct 18, 2024
afdd0c1
Merge remote-tracking branch 'upstream/main' into ENH-deal-properly-w…
theroggy Jan 16, 2025
c18ab22
Use datetime_as_string for reading with arrow
theroggy Jan 17, 2025
597855f
Update _io.pyx
theroggy Jan 17, 2025
fa4b86e
Skip tests where appropriate
theroggy Jan 17, 2025
0e41ae4
Improve support for mixed and naive datetimes
theroggy Jan 17, 2025
1378ace
Skip use_arrow tests with old gdal versions
theroggy Jan 17, 2025
0f1ab27
Take in account pandas version
theroggy Jan 17, 2025
6f78c68
Update test_geopandas_io.py
theroggy Jan 17, 2025
336d0d8
Also support columns with datetime objects
theroggy Jan 18, 2025
3035a11
Rename some test functions for consistency
theroggy Jan 18, 2025
9efdc09
Avoid warning in test
theroggy Jan 18, 2025
eb80e08
Improve inline comment
theroggy Jan 18, 2025
d50b2d0
Update CHANGES.md
theroggy Jan 18, 2025
47aa298
Merge remote-tracking branch 'upstream/main' into ENH-deal-properly-w…
theroggy Jan 19, 2025
1efa5bf
Symplify code
theroggy Jan 20, 2025
0032839
Don't cast UTC data to string when writing
theroggy Jan 20, 2025
9d2bfce
Various improvements to tests
theroggy Jan 20, 2025
ca9a8ae
Smal fixes to tests
theroggy Jan 20, 2025
deb862c
Xfail some tests where needed
theroggy Jan 20, 2025
e35c356
Make UTC assert more specific
theroggy Jan 22, 2025
593b282
Revert "Make UTC assert more specific"
theroggy Jan 22, 2025
35d8d87
Update test_geopandas_io.py
theroggy Jan 22, 2025
41c9da6
Use astype("string") instead of apply
theroggy Jan 23, 2025
f53af87
Improve tests
theroggy Jan 23, 2025
a8c85b7
Fix tests for older versions
theroggy Jan 23, 2025
40ca1a5
Update test_geopandas_io.py
theroggy Jan 23, 2025
fc53d44
Merge remote-tracking branch 'upstream/main' into ENH-deal-properly-w…
theroggy Jan 30, 2025
458d75b
Merge
theroggy Apr 23, 2025
8a38961
Merge remote-tracking branch 'upstream/main' into ENH-deal-properly-w…
theroggy May 13, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGES.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
### Improvements

- Capture all errors logged by gdal when opening a file fails (#495).
- Improve support for datetime columns (#486).
- Add support to read and write ".gpkg.zip" (GDAL >= 3.7), ".shp.zip", and ".shz"
files (#527).
- Compatibility with the string dtype in the upcoming pandas 3.0 release (#493).
Expand Down
8 changes: 8 additions & 0 deletions pyogrio/_io.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -1482,6 +1482,7 @@ def ogr_open_arrow(
int return_fids=False,
int batch_size=0,
use_pyarrow=False,
datetime_as_string=False,
):

cdef int err = 0
Expand Down Expand Up @@ -1695,6 +1696,12 @@ def ogr_open_arrow(
"GEOARROW".encode("UTF-8")
)

# Read DateTime fields as strings, as the Arrow DateTime column type is
# quite limited regarding support for mixed timezones,...
IF CTE_GDAL_VERSION >= (3, 11, 0):
if datetime_as_string:
options = CSLSetNameValue(options, "DATETIME_AS_STRING", "YES")

# make sure layer is read from beginning
OGR_L_ResetReading(ogr_layer)

Expand All @@ -1720,6 +1727,7 @@ def ogr_open_arrow(
"crs": crs,
"encoding": encoding,
"fields": fields[:, 2],
"dtypes": fields[:, 3],
"geometry_type": geometry_type,
"geometry_name": geometry_name,
"fid_column": fid_column,
Expand Down
114 changes: 102 additions & 12 deletions pyogrio/geopandas.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@

import os
import warnings
from datetime import datetime

import numpy as np

Expand Down Expand Up @@ -46,6 +47,7 @@ def _try_parse_datetime(ser):
datetime_kwargs = {"format": "ISO8601", "errors": "ignore"}
else:
datetime_kwargs = {"yearfirst": True}

with warnings.catch_warnings():
warnings.filterwarnings(
"ignore",
Expand All @@ -58,12 +60,6 @@ def _try_parse_datetime(ser):
res = pd.to_datetime(ser, **datetime_kwargs)
except Exception:
res = ser
# if object dtype, try parse as utc instead
if res.dtype in ("object", "string"):
try:
res = pd.to_datetime(ser, utc=True, **datetime_kwargs)
except Exception:
pass

if res.dtype.kind == "M": # any datetime64
# GDAL only supports ms precision, convert outputs to match.
Expand All @@ -73,6 +69,7 @@ def _try_parse_datetime(ser):
res = res.dt.as_unit("ms")
else:
res = res.dt.round(freq="ms")

return res


Expand Down Expand Up @@ -267,11 +264,10 @@ def read_dataframe(

read_func = read_arrow if use_arrow else read
gdal_force_2d = False if use_arrow else force_2d
if not use_arrow:
# For arrow, datetimes are read as is.
# For numpy IO, datetimes are read as string values to preserve timezone info
# as numpy does not directly support timezones.
kwargs["datetime_as_string"] = True

# Always read datetimes as string values to preserve (mixed) timezone info
# as numpy does not directly support timezones and arrow datetime columns
# don't support mixed timezones.
result = read_func(
path_or_buffer,
layer=layer,
Expand All @@ -288,6 +284,7 @@ def read_dataframe(
sql=sql,
sql_dialect=sql_dialect,
return_fids=fid_as_index,
datetime_as_string=True,
**kwargs,
)

Expand Down Expand Up @@ -330,6 +327,11 @@ def read_dataframe(

del table

# convert datetime columns that were read as string to datetime
for dtype, column in zip(meta["dtypes"], meta["fields"]):
if dtype is not None and dtype.startswith("datetime"):
df[column] = _try_parse_datetime(df[column])

if fid_as_index:
df = df.set_index(meta["fid_column"])
df.index.names = ["fid"]
Expand Down Expand Up @@ -619,8 +621,33 @@ def write_dataframe(
df = pd.DataFrame(df, copy=False)
df[geometry_column] = geometry

# Convert all datetime columns to isoformat strings, to avoid mixed timezone
# information getting lost.
datetime_cols = []
for name, dtype in df.dtypes.items():
col = df[name]
if dtype == "object":
# When all non-NA values are Timestamps, treat as datetime column
col_na = df[col.notna()][name]
if len(col_na) and all(
isinstance(x, (pd.Timestamp, datetime)) for x in col_na
):
df[name] = col.astype("string")
datetime_cols.append(name)
elif isinstance(dtype, pd.DatetimeTZDtype) and str(dtype.tz) != "UTC":
# When it is a datetime column with a timezone different than UTC, it
# needs to be converted to string, otherwise the timezone info is lost.
df[name] = col.astype("string")
datetime_cols.append(name)

table = pa.Table.from_pandas(df, preserve_index=False)

# Add metadata to datetime columns so GDAL knows they are datetimes.
for datetime_col in datetime_cols:
table = _add_column_metadata(
table, column_metadata={datetime_col: {"GDAL:OGR:type": "DateTime"}}
)

# Null arrow columns are not supported by GDAL, so convert to string
for field_index, field in enumerate(table.schema):
if field.type == pa.null():
Expand Down Expand Up @@ -678,6 +705,8 @@ def write_dataframe(
gdal_tz_offsets = {}
for name in fields:
col = df[name]
values = None

if isinstance(col.dtype, pd.DatetimeTZDtype):
# Deal with datetimes with timezones by passing down timezone separately
# pass down naive datetime
Expand All @@ -692,8 +721,24 @@ def write_dataframe(
# Convert each row offset to a signed multiple of 15m and add to GMT value
gdal_offset_representation = tz_offset // pd.Timedelta("15m") + 100
gdal_tz_offsets[name] = gdal_offset_representation.values
else:

elif col.dtype == "object":
# Column of Timestamp/datetime objects, split in naive datetime and tz.
col_na = df[col.notna()][name]
if len(col_na) and all(
isinstance(x, (pd.Timestamp, datetime)) for x in col_na
):
tz_offset = col.apply(lambda x: None if pd.isna(x) else x.utcoffset())
gdal_offset_repr = tz_offset // pd.Timedelta("15m") + 100
gdal_tz_offsets[name] = gdal_offset_repr.values
naive = col.apply(
lambda x: None if pd.isna(x) else x.replace(tzinfo=None)
)
values = naive.values

if values is None:
values = col.values

if isinstance(values, pd.api.extensions.ExtensionArray):
from pandas.arrays import BooleanArray, FloatingArray, IntegerArray

Expand Down Expand Up @@ -729,3 +774,48 @@ def write_dataframe(
gdal_tz_offsets=gdal_tz_offsets,
**kwargs,
)


def _add_column_metadata(table, column_metadata: dict = {}):
"""Add or update column-level metadata to an arrow table.

Parameters
----------
table : pyarrow.Table
The table to add the column metadata to.
column_metadata : dict
A dictionary with column metadata in the form
{
"column_1": {"some": "data"},
"column_2": {"more": "stuff"},
}

Returns
-------
pyarrow.Table: table with the updated column metadata.
"""
import pyarrow as pa

if not column_metadata:
return table

# Create updated column fields with new metadata
fields = []
for col in table.schema.names:
if col in column_metadata:
# Add/update column metadata
metadata = table.field(col).metadata or {}
for key, value in column_metadata[col].items():
metadata[key] = value
# Update field with updated metadata
fields.append(table.field(col).with_metadata(metadata))
else:
fields.append(table.field(col))

# Create new schema with the updated field metadata
schema = pa.schema(fields, metadata=table.schema.metadata)

# Build new table with updated schema (shouldn't copy data)
table = table.cast(schema)

return table
8 changes: 8 additions & 0 deletions pyogrio/raw.py
Original file line number Diff line number Diff line change
Expand Up @@ -233,6 +233,7 @@ def read_arrow(
sql=None,
sql_dialect=None,
return_fids=False,
datetime_as_string=False,
**kwargs,
):
"""Read OGR data source into a pyarrow Table.
Expand Down Expand Up @@ -303,6 +304,7 @@ def read_arrow(
skip_features=gdal_skip_features,
batch_size=batch_size,
use_pyarrow=True,
datetime_as_string=datetime_as_string,
**kwargs,
) as source:
meta, reader = source
Expand Down Expand Up @@ -358,6 +360,7 @@ def open_arrow(
return_fids=False,
batch_size=65_536,
use_pyarrow=False,
datetime_as_string=False,
**kwargs,
):
"""Open OGR data source as a stream of Arrow record batches.
Expand Down Expand Up @@ -386,6 +389,9 @@ def open_arrow(
ArrowStream object. In the default case, this stream object needs
to be passed to another library supporting the Arrow PyCapsule
Protocol to consume the stream of data.
datetime_as_string : bool, optional (default: False)
If True, will return datetime dtypes as detected by GDAL as strings,
as arrow doesn't support e.g. mixed timezones.

Examples
--------
Expand Down Expand Up @@ -423,6 +429,7 @@ def open_arrow(
Meta is: {
"crs": "<crs>",
"fields": <ndarray of field names>,
"dtypes": <ndarray of numpy dtypes corresponding to fields>
"encoding": "<encoding>",
"geometry_type": "<geometry_type>",
"geometry_name": "<name of geometry column in arrow table>",
Expand Down Expand Up @@ -453,6 +460,7 @@ def open_arrow(
dataset_kwargs=dataset_kwargs,
batch_size=batch_size,
use_pyarrow=use_pyarrow,
datetime_as_string=datetime_as_string,
)


Expand Down
Loading
Loading