Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[docs] Model cards #11112

Draft
wants to merge 7 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 0 additions & 2 deletions docs/source/en/_toctree.yml
Original file line number Diff line number Diff line change
Expand Up @@ -87,8 +87,6 @@
title: API Reference
title: Hybrid Inference
- sections:
- local: using-diffusers/cogvideox
title: CogVideoX
- local: using-diffusers/consisid
title: ConsisID
- local: using-diffusers/sdxl
Expand Down
6 changes: 5 additions & 1 deletion docs/source/en/api/loaders/lora.md
Original file line number Diff line number Diff line change
Expand Up @@ -79,4 +79,8 @@ To learn more about how to load LoRA weights, see the [LoRA](../../using-diffuse

## LoraBaseMixin

[[autodoc]] loaders.lora_base.LoraBaseMixin
[[autodoc]] loaders.lora_base.LoraBaseMixin

## WanLoraLoaderMixin

[[autodoc]] loaders.lora_pipeline.WanLoraLoaderMixin
239 changes: 127 additions & 112 deletions docs/source/en/api/pipelines/cogvideox.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,150 +13,165 @@
# limitations under the License.
-->

# CogVideoX

<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
</div>

[CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer](https://arxiv.org/abs/2408.06072) from Tsinghua University & ZhipuAI, by Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang, Wenyi Hong, Xiaohan Zhang, Guanyu Feng, Da Yin, Xiaotao Gu, Yuxuan Zhang, Weihan Wang, Yean Cheng, Ting Liu, Bin Xu, Yuxiao Dong, Jie Tang.

The abstract from the paper is:

*We introduce CogVideoX, a large-scale diffusion transformer model designed for generating videos based on text prompts. To efficently model video data, we propose to levearge a 3D Variational Autoencoder (VAE) to compresses videos along both spatial and temporal dimensions. To improve the text-video alignment, we propose an expert transformer with the expert adaptive LayerNorm to facilitate the deep fusion between the two modalities. By employing a progressive training technique, CogVideoX is adept at producing coherent, long-duration videos characterized by significant motion. In addition, we develop an effectively text-video data processing pipeline that includes various data preprocessing strategies and a video captioning method. It significantly helps enhance the performance of CogVideoX, improving both generation quality and semantic alignment. Results show that CogVideoX demonstrates state-of-the-art performance across both multiple machine metrics and human evaluations. The model weight of CogVideoX-2B is publicly available at https://github.com/THUDM/CogVideo.*

<Tip>

Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.

</Tip>

This pipeline was contributed by [zRzRzRzRzRzRzR](https://github.com/zRzRzRzRzRzRzR). The original codebase can be found [here](https://huggingface.co/THUDM). The original weights can be found under [hf.co/THUDM](https://huggingface.co/THUDM).

There are three official CogVideoX checkpoints for text-to-video and video-to-video.

| checkpoints | recommended inference dtype |
|:---:|:---:|
| [`THUDM/CogVideoX-2b`](https://huggingface.co/THUDM/CogVideoX-2b) | torch.float16 |
| [`THUDM/CogVideoX-5b`](https://huggingface.co/THUDM/CogVideoX-5b) | torch.bfloat16 |
| [`THUDM/CogVideoX1.5-5b`](https://huggingface.co/THUDM/CogVideoX1.5-5b) | torch.bfloat16 |

There are two official CogVideoX checkpoints available for image-to-video.
# CogVideoX

| checkpoints | recommended inference dtype |
|:---:|:---:|
| [`THUDM/CogVideoX-5b-I2V`](https://huggingface.co/THUDM/CogVideoX-5b-I2V) | torch.bfloat16 |
| [`THUDM/CogVideoX-1.5-5b-I2V`](https://huggingface.co/THUDM/CogVideoX-1.5-5b-I2V) | torch.bfloat16 |
[CogVideoX](https://huggingface.co/papers/2408.06072) is a large diffusion transformer model - available in 2B and 5B parameters - designed to generate longer and more consistent videos from text. This model uses a 3D causal variational autoencoder to more efficiently process video data by reducing sequence length (and associated training compute) and preventing flickering in generated videos. An "expert" transformer with adaptive LayerNorm improves alignment between text and video, and 3D full attention helps accurately capture motion and time in generated videos.

For the CogVideoX 1.5 series:
- Text-to-video (T2V) works best at a resolution of 1360x768 because it was trained with that specific resolution.
- Image-to-video (I2V) works for multiple resolutions. The width can vary from 768 to 1360, but the height must be 768. The height/width must be divisible by 16.
- Both T2V and I2V models support generation with 81 and 161 frames and work best at this value. Exporting videos at 16 FPS is recommended.
You can find all the original CogVideoX checkpoints under the [CogVideoX](https://huggingface.co/collections/THUDM/cogvideo-66c08e62f1685a3ade464cce) collection.

There are two official CogVideoX checkpoints that support pose controllable generation (by the [Alibaba-PAI](https://huggingface.co/alibaba-pai) team).
> [!TIP]
> Click on the CogVideoX models in the right sidebar for more examples of other video generation tasks.

| checkpoints | recommended inference dtype |
|:---:|:---:|
| [`alibaba-pai/CogVideoX-Fun-V1.1-2b-Pose`](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-2b-Pose) | torch.bfloat16 |
| [`alibaba-pai/CogVideoX-Fun-V1.1-5b-Pose`](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-5b-Pose) | torch.bfloat16 |
The example below demonstrates how to generate a video optimized for memory or inference speed.

## Inference
<hfoptions id="usage">
<hfoption id="memory">

Use [`torch.compile`](https://huggingface.co/docs/diffusers/main/en/tutorials/fast_diffusion#torchcompile) to reduce the inference latency.
Refer to the [Reduce memory usage](../../optimization/memory) guide for more details about the various memory saving techniques.

First, load the pipeline:
The quantized CogVideoX 5B model below requires ~16GB of VRAM.

```python
```py
import torch
from diffusers import CogVideoXPipeline, CogVideoXImageToVideoPipeline
from diffusers.utils import export_to_video,load_image
pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5b").to("cuda") # or "THUDM/CogVideoX-2b"
```

If you are using the image-to-video pipeline, load it as follows:
from diffusers import CogVideoXPipeline, CogVideoXTransformer3DModel
from diffusers.hooks import apply_group_offloading
from diffusers.utils import export_to_video

```python
pipe = CogVideoXImageToVideoPipeline.from_pretrained("THUDM/CogVideoX-5b-I2V").to("cuda")
```
# quantize weights to int8 with torchao
quantization_config = TorchAoConfig("int8wo")
transformer = CogVideoXTransformer3DModel.from_pretrained(
"THUDM/CogVideoX-5b",
subfolder="transformer",
quantization_config=quantization_config,
torch_dtype=torch.bfloat16,
)

Then change the memory layout of the pipelines `transformer` component to `torch.channels_last`:
# fp8 layerwise weight-casting
transformer = CogVideoXTransformer3DModel.from_pretrained(
"THUDM/CogVideoX-5b",
subfolder="transformer",
torch_dtype=torch.bfloat16
)
transformer.enable_layerwise_casting(
storage_dtype=torch.float8_e4m3fn,
compute_dtype=torch.bfloat16
)

```python
pipe.transformer.to(memory_format=torch.channels_last)
pipeline = CogVideoXPipeline.from_pretrained(
"THUDM/CogVideoX-5b",
transformer=transformer,
torch_dtype=torch.bfloat16
)
pipeline.to("cuda")

# model-offloading
pipeline.enable_model_cpu_offload()

prompt = """
A detailed wooden toy ship with intricately carved masts and sails is seen gliding smoothly over a plush, blue carpet that mimics the waves of the sea.
The ship's hull is painted a rich brown, with tiny windows. The carpet, soft and textured, provides a perfect backdrop, resembling an oceanic expanse.
Surrounding the ship are various other toys and children's items, hinting at a playful environment. The scene captures the innocence and imagination of childhood,
with the toy ship's journey symbolizing endless adventures in a whimsical, indoor setting.
"""

video = pipeline(
prompt=prompt,
guidance_scale=6,
num_inference_steps=50
).frames[0]
export_to_video(video, "output.mp4", fps=8)
```

Compile the components and run inference:
</hfoption>
<hfoption id="inference speed">

```python
pipe.transformer = torch.compile(pipeline.transformer, mode="max-autotune", fullgraph=True)
Compilation is slow the first time but subsequent calls to the pipeline are faster.

# CogVideoX works well with long and well-described prompts
prompt = "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance."
video = pipe(prompt=prompt, guidance_scale=6, num_inference_steps=50).frames[0]
```
```py
import torch
from diffusers import CogVideoXPipeline, CogVideoXTransformer3DModel
from diffusers.utils import export_to_video

The [T2V benchmark](https://gist.github.com/a-r-r-o-w/5183d75e452a368fd17448fcc810bd3f) results on an 80GB A100 machine are:
pipeline = CogVideoXPipeline.from_pretrained(
"THUDM/CogVideoX-2b",
torch_dtype=torch.float16
).to("cuda")

# torch.compile
pipeline.transformer.to(memory_format=torch.channels_last)
pipeline.transformer = torch.compile(
pipeline.transformer, mode="max-autotune", fullgraph=True
)

```
Without torch.compile(): Average inference time: 96.89 seconds.
With torch.compile(): Average inference time: 76.27 seconds.
prompt = """
A detailed wooden toy ship with intricately carved masts and sails is seen gliding smoothly over a plush, blue carpet that mimics the waves of the sea.
The ship's hull is painted a rich brown, with tiny windows. The carpet, soft and textured, provides a perfect backdrop, resembling an oceanic expanse.
Surrounding the ship are various other toys and children's items, hinting at a playful environment. The scene captures the innocence and imagination of childhood,
with the toy ship's journey symbolizing endless adventures in a whimsical, indoor setting.
"""

video = pipeline(
prompt=prompt,
guidance_scale=6,
num_inference_steps=50
).frames[0]
export_to_video(video, "output.mp4", fps=8)
```

### Memory optimization
</hfoption>
</hfoptions>

CogVideoX-2b requires about 19 GB of GPU memory to decode 49 frames (6 seconds of video at 8 FPS) with output resolution 720x480 (W x H), which makes it not possible to run on consumer GPUs or free-tier T4 Colab. The following memory optimizations could be used to reduce the memory footprint. For replication, you can refer to [this](https://gist.github.com/a-r-r-o-w/3959a03f15be5c9bd1fe545b09dfcc93) script.
## Notes

- `pipe.enable_model_cpu_offload()`:
- Without enabling cpu offloading, memory usage is `33 GB`
- With enabling cpu offloading, memory usage is `19 GB`
- `pipe.enable_sequential_cpu_offload()`:
- Similar to `enable_model_cpu_offload` but can significantly reduce memory usage at the cost of slow inference
- When enabled, memory usage is under `4 GB`
- `pipe.vae.enable_tiling()`:
- With enabling cpu offloading and tiling, memory usage is `11 GB`
- `pipe.vae.enable_slicing()`
- CogVideoX supports LoRAs with [`~loaders.CogVideoXLoraLoaderMixin.load_lora_weights`].

## Quantization
```py
import torch
from diffusers import CogVideoXPipeline, CogVideoXTransformer3DModel
from diffusers.hooks import apply_group_offloading
from diffusers.utils import export_to_video

Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
pipeline = CogVideoXPipeline.from_pretrained(
"THUDM/CogVideoX-5b",
torch_dtype=torch.bfloat16
)
pipeline.to("cuda")

Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`CogVideoXPipeline`] for inference with bitsandbytes.
# load LoRA weights
pipeline.load_lora_weights("finetrainers/CogVideoX-1.5-crush-smol-v0", adapter_name="crush-lora")
pipeline.set_adapters("crush-lora", 0.9)

```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, CogVideoXTransformer3DModel, CogVideoXPipeline
from diffusers.utils import export_to_video
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, T5EncoderModel

quant_config = BitsAndBytesConfig(load_in_8bit=True)
text_encoder_8bit = T5EncoderModel.from_pretrained(
"THUDM/CogVideoX-2b",
subfolder="text_encoder",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
# model-offloading
pipeline.enable_model_cpu_offload()

quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = CogVideoXTransformer3DModel.from_pretrained(
"THUDM/CogVideoX-2b",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
prompt = """
PIKA_CRUSH A large metal cylinder is seen pressing down on a pile of Oreo cookies, flattening them as if they were under a hydraulic press.
"""
negative_prompt = "inconsistent motion, blurry motion, worse quality, degenerate outputs, deformed outputs"

pipeline = CogVideoXPipeline.from_pretrained(
"THUDM/CogVideoX-2b",
text_encoder=text_encoder_8bit,
transformer=transformer_8bit,
torch_dtype=torch.float16,
device_map="balanced",
)
video = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_frames=81,
height=480,
width=768,
num_inference_steps=50
).frames[0]
export_to_video(video, "output.mp4", fps=16)
```

prompt = "A detailed wooden toy ship with intricately carved masts and sails is seen gliding smoothly over a plush, blue carpet that mimics the waves of the sea. The ship's hull is painted a rich brown, with tiny windows. The carpet, soft and textured, provides a perfect backdrop, resembling an oceanic expanse. Surrounding the ship are various other toys and children's items, hinting at a playful environment. The scene captures the innocence and imagination of childhood, with the toy ship's journey symbolizing endless adventures in a whimsical, indoor setting."
video = pipeline(prompt=prompt, guidance_scale=6, num_inference_steps=50).frames[0]
export_to_video(video, "ship.mp4", fps=8)
```
- The text-to-video (T2V) checkpoints work best with a resolution of 1360x768 because that was the resolution it was pretrained on.

- The image-to-video (I2V) checkpoints work with multiple resolutions. The width can vary from 768 to 1360, but the height must be 758. Both height and width must be divisible by 16.

- Both T2V and I2V checkpoints work best with 81 and 161 frames. It is recommended to export the generated video at 16fps.

## CogVideoXPipeline

[[autodoc]] CogVideoXPipeline
Expand Down
Loading