Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 10 additions & 4 deletions aimnet/calculators/aimnet2ase.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,14 @@
class AIMNet2ASE(Calculator):
from typing import ClassVar

implemented_properties: ClassVar[list[str]] = ["energy", "forces", "free_energy", "charges", "stress", "dipole_moment"]
implemented_properties: ClassVar[list[str]] = [
"energy",
"forces",
"free_energy",
"charges",
"stress",
"dipole_moment",
]

def __init__(self, base_calc: AIMNet2Calculator | str = "aimnet2", charge=0, mult=1):
super().__init__()
Expand Down Expand Up @@ -59,12 +66,11 @@ def update_tensors(self):
if self._t_mult is None:
self._t_mult = torch.tensor(self.mult, dtype=torch.float32, device=self.base_calc.device)

def get_dipole_moment(self,atoms):
def get_dipole_moment(self, atoms):
charges = self.get_charges()[:, np.newaxis]
positions = atoms.get_positions()
return np.sum(charges * positions, axis=0)


def calculate(self, atoms=None, properties=None, system_changes=all_changes):
if properties is None:
properties = ["energy"]
Expand Down Expand Up @@ -97,7 +103,7 @@ def calculate(self, atoms=None, properties=None, system_changes=all_changes):

self.results["energy"] = results["energy"].item()
self.results["charges"] = results["charges"]
self.results['dipole_moment'] = self.get_dipole_moment(self.atoms)
self.results["dipole_moment"] = self.get_dipole_moment(self.atoms)

if "forces" in properties:
self.results["forces"] = results["forces"]
Expand Down
2 changes: 1 addition & 1 deletion aimnet/calculators/calculator.py
Original file line number Diff line number Diff line change
Expand Up @@ -146,7 +146,7 @@ def mol_flatten(self, data: Dict[str, Tensor]) -> Dict[str, Tensor]:
elif ndim == 3:
# batched input
B, N = data["coord"].shape[:2]
if N > self.nb_threshold or self.device == "cpu":
if self.nb_threshold < N or self.device == "cpu":
self._batch = B
data["mol_idx"] = torch.repeat_interleave(
torch.arange(0, B, device=self.device), torch.full((B,), N, device=self.device)
Expand Down
6 changes: 3 additions & 3 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -18,16 +18,16 @@ aimnet = "aimnet.cli:cli"
python = ">=3.10,<4.0"
torch = ">=2.4"
pyyaml = "^6.0.2"
numpy = "<2.0"
numba = "^0.60.0"
numpy = ">=2.0"
numba = ">=0.61.0"
requests = "^2.32.3"
click = "^8.1.7"
omegaconf = "^2.3.0"
wandb = "^0.18.5"
jinja2 = "^3.1.4"
h5py = "^3.12.1"
pytorch-ignite = "^0.5.1"
ase = "3.22.1"
ase = ">=3.23"

[tool.poetry.group.dev.dependencies]
pytest = "^7.2.0"
Expand Down
8 changes: 4 additions & 4 deletions tests/test_ase.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,22 +4,22 @@

from aimnet.calculators import AIMNet2ASE

MODELS = ('aimnet2', 'aimnet2_b973c')
MODELS = ("aimnet2", "aimnet2_b973c")

file = os.path.join(os.path.dirname(__file__), "data", "caffeine.xyz")


def test_calculator():
for model in MODELS:

atoms = read(file)
atoms.calc = AIMNet2ASE(model)
e = atoms.get_potential_energy()
assert isinstance(e, float)

assert hasattr(atoms, 'get_charges')
assert hasattr(atoms, "get_charges")
q = atoms.get_charges()
assert q.shape == (len(atoms),)

assert hasattr(atoms, 'get_dipole_moment')
assert hasattr(atoms, "get_dipole_moment")
dm = atoms.get_dipole_moment()
assert dm.shape == (3,)
6 changes: 3 additions & 3 deletions tests/test_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,9 +44,9 @@ def test_aimnet2():
model.load_state_dict(model_from_zoo.state_dict(), strict=False)
model = Forces(model)
atoms = ase.io.read(os.path.join(os.path.dirname(__file__), "data", "caffeine.xyz"))
ref_e = atoms.info["energy"] # type: ignore
ref_f = atoms.arrays["forces"] # type: ignore
ref_q = atoms.arrays["initial_charges"] # type: ignore
ref_e = atoms.get_total_energy() # type: ignore
ref_f = atoms.get_forces() # type: ignore
ref_q = atoms.get_charges() # type: ignore
_in = {
"coord": torch.as_tensor(atoms.get_positions()).unsqueeze(0), # type: ignore
"numbers": torch.as_tensor(atoms.get_atomic_numbers()).unsqueeze(0), # type: ignore
Expand Down