Skip to content

ishara084/CS6850_DA_Project

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

36 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CS6850 Final Project

  • Coding material for final project in CS6850 - Data Analytics
  • Title - Forecasting Walmart Retail Sales with Predictive Data Analysis

Project structure

root
|-- data_preprocessing.ipynb                                            ------------> Initial Data Pre-processing
|-- libs.py                                                             ------------> Contain common class and methods for data preparation and model evaluation 
|-- EDA_summarization_visualization.ipynb                               ------------> EDA Data exploration and summarization
|-- predictive_modeling_data_prep.ipynb                                 ------------> Data preparation for predictive modelings
|-- predictive_modeling_bias_evaluation.ipynb                           ------------> Bias and Fairness evaluation of predictive models
|-- predictive_modeling_Linear_Regression.ipynb                         ------------> Linear Regression Classifier
|-- predictive_modeling_Decision_Tree.ipynb                             ------------> Decision Tree Classsifier
|-- predictive_modeling_Random_Forest.ipynb                             ------------> Random Forest Classsifier
|-- predictive_modeling_XGBoost.ipynb                                   ------------> XGBoost Classsifier
    |-- data
    |   |-- preproprocessed
    |   |   |-- main.csv                                                ------------> Main dataset after initial preprocessing, used for EDA
    |   |   |-- main_ML_ready.csv                                       ------------> ML ready dataset for predictive modeling (After processing main.csv)
    |   |-- source                                                      ------------> Contains original dataset from Kaggle

Instruction

  • Install relevant libraries if not already installed. Necessary libraries are mentioned in top of each notebook
  • Original dataset was pre-processed, merged and stored in data\preprocessed directory and it was used for all analytics and predictive models.
  • If some cell outputs are empty or showing errors, re-execute the notebook.

About

Data Analytics Final Project for CS6850

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •