Repo for special course in Machine Learning Operations at DTU.
Prepare data
usage: python make_dataset.py <root>
Script for downloading MNIST data and creating train/test splits.
positional arguments:
root Directory to place MNIST data folder in.Training
usage: train_model.py [-h] [--lr LR] [--mb_size MB_SIZE] [--epochs EPOCHS]
[--dropout DROPOUT] [--model_path MODEL_PATH]
[--data_path DATA_PATH] [--fig_path FIG_PATH]
Script for training an image classifier.
optional arguments:
-h, --help show this help message and exit
--lr LR
--mb_size MB_SIZE
--epochs EPOCHS
--dropout DROPOUT
--model_path MODEL_PATH
--data_path DATA_PATH
--fig_path FIG_PATHEvaluation
usage: evaluate_model.py [-h] [--model_path MODEL_PATH]
[--data_path DATA_PATH] [--mb_size MB_SIZE]
Script for evaluating pre-trained image classifier.
optional arguments:
-h, --help show this help message and exit
--model_path MODEL_PATH
--data_path DATA_PATH
--mb_size MB_SIZEPrediction
usage: predict_model.py [-h] [--model_path MODEL_PATH] [--mb_size MB_SIZE]
data_path
Script for predicting with pre-trained image classifier.
positional arguments:
data_path
optional arguments:
-h, --help show this help message and exit
--model_path MODEL_PATH
--mb_size MB_SIZEVisualization of embeddings
usage: visualize.py [-h] [--model_path MODEL_PATH] [--data_path DATA_PATH]
[--fig_path FIG_PATH] [--mb_size MB_SIZE]
Script for visualizing embeddings created by image classifier
optional arguments:
-h, --help show this help message and exit
--model_path MODEL_PATH
--data_path DATA_PATH
--fig_path FIG_PATH
--mb_size MB_SIZE