Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions ML-For-Beginners
Submodule ML-For-Beginners added at f925c9
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# AI Introduction
# AI Introduction
Artificial intelligence (AI) is intelligence demonstrated by machines, as opposed to intelligence of humans and other animals. Example tasks in which this is done include speech recognition, computer vision, translation between (natural) languages, as well as other mappings of inputs.

AI applications include advanced web search engines (e.g., Google Search), recommendation systems (used by YouTube, Amazon, and Netflix), understanding human speech (such as Siri and Alexa), self-driving cars (e.g., Waymo), generative or creative tools (ChatGPT and AI art), automated decision-making, and competing at the highest level in strategic game systems (such as chess and Go).
Expand Down
379 changes: 379 additions & 0 deletions contribution_plan.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,379 @@
# 🚀 AI/ML Open Source Contribution Plan

## 🎯 Target Projects & High-Impact Opportunities

Based on your Python, AI/ML, and Cloud Infrastructure background, here are the **TOP 3 RECOMMENDED CONTRIBUTIONS**:

---

## 🥇 **PRIORITY 1: Microsoft ML-For-Beginners**
**Repository**: https://github.com/microsoft/ML-For-Beginners
**Focus**: Educational ML content & Python examples

### 🔥 **High-Impact Issue #1: Documentation Enhancement**
**Issue**: [Add comprehensive documentation](https://github.com/microsoft/ML-For-Beginners/issues/835)

#### **Problem Explanation**
The ML-For-Beginners repository lacks comprehensive documentation, making it difficult for new contributors and learners to:
- Understand the project structure
- Set up development environment
- Navigate between lessons
- Contribute effectively

#### **Suggested Solution**
Create a comprehensive documentation framework with:

```python
# Documentation Structure
docs/
├── README.md # Main documentation
├── getting-started/
│ ├── installation.md # Setup instructions
│ ├── environment.md # Development environment
│ └── first-contribution.md # How to contribute
├── lessons/
│ ├── lesson-guide.md # How lessons are structured
│ └── example-walkthrough.md # Sample lesson breakdown
├── api/
│ ├── code-reference.md # Code documentation
│ └── utilities.md # Helper functions
└── contributing/
├── guidelines.md # Contribution guidelines
├── code-style.md # Coding standards
└── review-process.md # PR review process
```

#### **Implementation Plan**
1. **Audit existing content** - catalog all lessons and code
2. **Create documentation framework** - structured markdown files
3. **Add interactive examples** - code snippets with explanations
4. **Include setup guides** - environment configuration
5. **Write contributor guide** - detailed contribution process

---

### 🔥 **High-Impact Issue #2: Confusion Matrix Fix**
**Issue**: [Wrong False Negative Definition](https://github.com/microsoft/ML-For-Beginners/issues/825)

#### **Problem Explanation**
The current definition of "False Negative" in the Confusion Matrix lesson is incorrect:
- **Current (Wrong)**: False Negative = Model predicts positive when actual is negative
- **Correct**: False Negative = Model predicts negative when actual is positive

This error can mislead beginners learning fundamental ML concepts.

#### **Suggested Solution**
```python
# Correct Confusion Matrix Implementation
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix, classification_report

def create_confusion_matrix_tutorial():
"""
Comprehensive confusion matrix tutorial with correct definitions
"""

# Example predictions vs actual
y_true = [1, 0, 1, 1, 0, 1, 0, 0, 1, 0]
y_pred = [1, 0, 0, 1, 0, 1, 1, 0, 1, 0]

# Create confusion matrix
cm = confusion_matrix(y_true, y_pred)

# CORRECT DEFINITIONS:
tn, fp, fn, tp = cm.ravel()

print("📊 Confusion Matrix Breakdown:")
print(f"True Positives (TP): {tp}")
print(f"True Negatives (TN): {tn}")
print(f"False Positives (FP): {fp} - Model predicted POSITIVE when actual was NEGATIVE")
print(f"False Negatives (FN): {fn} - Model predicted NEGATIVE when actual was POSITIVE")

# Calculate metrics
accuracy = (tp + tn) / (tp + tn + fp + fn)
precision = tp / (tp + fp)
recall = tp / (tp + fn)

return cm, accuracy, precision, recall

# Add interactive visualization
def plot_confusion_matrix_with_explanations(cm):
"""Visual confusion matrix with detailed explanations"""
fig, ax = plt.subplots(figsize=(10, 8))
im = ax.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
ax.figure.colorbar(im, ax=ax)

# Add labels and explanations
classes = ['Negative', 'Positive']
ax.set(xticks=np.arange(cm.shape[1]),
yticks=np.arange(cm.shape[0]),
xticklabels=classes, yticklabels=classes,
title='Confusion Matrix with Correct Definitions',
ylabel='True Label',
xlabel='Predicted Label')

# Add text annotations
thresh = cm.max() / 2.
for i in range(cm.shape[0]):
for j in range(cm.shape[1]):
ax.text(j, i, format(cm[i, j], 'd'),
ha="center", va="center",
color="white" if cm[i, j] > thresh else "black")

plt.tight_layout()
return fig
```

---

## 🥈 **PRIORITY 2: Microsoft Recommenders**
**Repository**: https://github.com/microsoft/recommenders
**Focus**: Advanced recommendation systems

### 🔥 **High-Impact Issue: Deep Learning Model Implementation**
**Potential Contribution**: Implement transformer-based recommender system

#### **Problem Explanation**
Current recommender systems in the repo focus on traditional collaborative filtering and matrix factorization. There's growing demand for:
- Transformer-based recommendation models
- Sequential recommendation systems
- Multi-modal recommendation approaches

#### **Suggested Solution**
```python
# Transformer-Based Recommender Implementation
import torch
import torch.nn as nn
from torch.nn import Transformer
import pandas as pd
import numpy as np

class TransformerRecommender(nn.Module):
"""
Transformer-based recommendation system for sequential user behavior
"""

def __init__(self, vocab_size, d_model=512, nhead=8, num_layers=6, max_seq_len=100):
super().__init__()
self.d_model = d_model
self.embedding = nn.Embedding(vocab_size, d_model)
self.pos_encoding = PositionalEncoding(d_model, max_seq_len)
self.transformer = Transformer(
d_model=d_model,
nhead=nhead,
num_encoder_layers=num_layers,
num_decoder_layers=num_layers,
batch_first=True
)
self.output_layer = nn.Linear(d_model, vocab_size)

def forward(self, src, tgt):
# Embed and add positional encoding
src_emb = self.pos_encoding(self.embedding(src))
tgt_emb = self.pos_encoding(self.embedding(tgt))

# Transformer forward pass
output = self.transformer(src_emb, tgt_emb)

# Output projection
return self.output_layer(output)

class PositionalEncoding(nn.Module):
"""Positional encoding for transformer"""

def __init__(self, d_model, max_len=5000):
super().__init__()
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() *
(-np.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
self.register_buffer('pe', pe.unsqueeze(0))

def forward(self, x):
return x + self.pe[:, :x.size(1)]

# Example usage and training loop
def train_transformer_recommender():
"""Complete training pipeline for transformer recommender"""

# Initialize model
model = TransformerRecommender(vocab_size=10000)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()

# Training loop implementation
for epoch in range(100):
# Load batch data
# Forward pass
# Calculate loss
# Backward pass
# Update weights
pass

return model
```

---

## 🥉 **PRIORITY 3: Azure Machine Learning Notebooks**
**Repository**: https://github.com/Azure/MachineLearningNotebooks
**Focus**: Cloud ML integration

### 🔥 **High-Impact Issue: MLOps Pipeline Examples**
**Potential Contribution**: End-to-end MLOps pipeline with Azure ML

#### **Problem Explanation**
Many developers struggle with implementing complete MLOps workflows that include:
- Automated model training
- Model versioning and registry
- Continuous deployment
- Monitoring and retraining

#### **Suggested Solution**
```python
# Complete MLOps Pipeline Implementation
from azureml.core import Workspace, Environment, ScriptRunConfig
from azureml.core.model import Model
from azureml.pipeline.core import Pipeline, PipelineData
from azureml.pipeline.steps import PythonScriptStep
from azureml.core.compute import ComputeTarget, AmlCompute

class MLOpsPipeline:
"""
Complete MLOps pipeline for Azure ML
"""

def __init__(self, workspace, compute_target):
self.ws = workspace
self.compute_target = compute_target
self.env = self._create_environment()

def _create_environment(self):
"""Create ML environment with dependencies"""
env = Environment.from_conda_specification(
name="mlops-env",
file_path="environment.yml"
)
return env

def create_training_pipeline(self):
"""Create automated training pipeline"""

# Data preparation step
data_prep_step = PythonScriptStep(
script_name="data_preparation.py",
compute_target=self.compute_target,
environment=self.env,
allow_reuse=False
)

# Model training step
training_step = PythonScriptStep(
script_name="train_model.py",
compute_target=self.compute_target,
environment=self.env,
inputs=[data_prep_step.outputs['processed_data']],
allow_reuse=False
)

# Model evaluation step
evaluation_step = PythonScriptStep(
script_name="evaluate_model.py",
compute_target=self.compute_target,
environment=self.env,
inputs=[training_step.outputs['trained_model']],
allow_reuse=False
)

# Create pipeline
pipeline = Pipeline(
workspace=self.ws,
steps=[data_prep_step, training_step, evaluation_step]
)

return pipeline

def deploy_model(self, model_name):
"""Deploy model with monitoring"""

# Register model
model = Model.register(
workspace=self.ws,
model_name=model_name,
model_path="outputs/model.pkl"
)

# Create deployment configuration
# Deploy to AKS or ACI
# Set up monitoring

return model

# Example notebook implementation
def create_mlops_notebook():
"""Create comprehensive MLOps notebook"""

notebook_content = """
# Complete MLOps Pipeline with Azure ML

## 1. Setup and Configuration
## 2. Data Pipeline Creation
## 3. Model Training Automation
## 4. Model Deployment
## 5. Monitoring and Alerts
## 6. Continuous Integration/Deployment
"""

return notebook_content
```

---

## 📋 **Implementation Timeline**

### **Week 1-2: Priority 1 (ML-For-Beginners)**
- [ ] Fork repository and set up development environment
- [ ] Create documentation structure
- [ ] Fix confusion matrix definition
- [ ] Write comprehensive setup guides
- [ ] Submit PR with tests and examples

### **Week 3-4: Priority 2 (Recommenders)**
- [ ] Research transformer-based recommendation systems
- [ ] Implement transformer recommender model
- [ ] Create example notebooks and tutorials
- [ ] Write unit tests and benchmarks
- [ ] Submit PR with documentation

### **Week 5-6: Priority 3 (Azure ML Notebooks)**
- [ ] Design complete MLOps pipeline
- [ ] Implement automated training workflow
- [ ] Create deployment and monitoring examples
- [ ] Write comprehensive documentation
- [ ] Submit PR with full example

---

## 📊 **Contribution Tracking Template**

| Project | Issue | PR Link | Status | Impact Score |
|---------|-------|---------|--------|--------------|
| ML-For-Beginners | Documentation | TBD | In Progress | High |
| ML-For-Beginners | Confusion Matrix Fix | TBD | Planned | Medium |
| Recommenders | Transformer Model | TBD | Planned | High |
| Azure ML Notebooks | MLOps Pipeline | TBD | Planned | High |

---

## 🚀 **Next Steps**

1. **Choose your priority project** from the list above
2. **Set up development environment** for the selected repository
3. **Start with the highest impact issue** that matches your expertise
4. **Follow the detailed implementation plan** provided
5. **Track progress** using the contribution template

Would you like me to help you get started with any of these specific contributions?
Loading