Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement fft torchop #2141

Draft
wants to merge 9 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
205 changes: 103 additions & 102 deletions onnxscript/function_libs/torch_lib/ops/fft.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,99 +20,43 @@
from onnxscript.onnx_opset import opset18 as op
from onnxscript.onnx_types import TensorType


@torch_op(
("aten::_fft_c2c", "aten::_fft_c2r", "aten::_fft_r2c"),
private=True,
complex=True,
trace_only=True,
)
def _fftn_onnx_normalization(
self,
transformed: TFloat,
self: TFloat,
normalization: int,
forward: bool,
dims: Sequence[int],
signal_size: TFloat,
) -> TFloat:
# Obtain the total_sample_count (n) for normalization
self_shape = op.Shape(self)
total_sample_count = op.ReduceProd(op.Gather(self_shape, dims), keepdims=0)
total_sample_count = op.CastLike(total_sample_count, transformed)

# Normalize the result
# Reference https://pytorch.org/docs/stable/generated/torch.fft.fftn.html#torch.fft.fftn
# Reference https://github.com/pytorch/pytorch/blob/d090c18fcaaba6e1b5cb474a89058cf6081c8275/torch/_refs/fft.py#L42
"""Normalize in forward direction."""
# TODO: Make more efficient
# Norm values defined in https://github.com/pytorch/pytorch/blob/758d78790164bfb041555daed380de96e06f78a3/aten/src/ATen/native/SpectralOps.cpp#L117-L131
# Norm modes: https://github.com/pytorch/pytorch/blob/758d78790164bfb041555daed380de96e06f78a3/aten/src/ATen/native/SpectralOpsUtils.h#L15-L19
# Modes:
# 0: no normalization (backward)
# 1: "ortho" - divide by 1/sqrt(signal_size) (ortho)
# 2: divide by signal_size (forward)
if normalization == 1:
# "forward" - normalize by 1/n
if forward:
result = op.Div(transformed, op.Sqrt(total_sample_count))
else:
result = op.Mul(transformed, op.Sqrt(total_sample_count))
self = op.Div(self, op.Sqrt(signal_size))
elif normalization == 2:
# "ortho" - normalize by 1/sqrt(n)
if forward:
result = op.Div(transformed, total_sample_count)
else:
result = transformed
else:
# "backward" - no normalization
if forward:
result = transformed
else:
result = op.Mul(transformed, total_sample_count)

return result

self = op.Div(self, signal_size)
return self

@torch_op(
("aten::_fft_c2c", "aten::_fft_c2r", "aten::_fft_r2c"),
trace_only=True,
private=True,
complex=True,
)
def _fftn_onnx(
self: TFloat, dims: Sequence[int], normalization: int, inverse: bool, onesided: bool
def _fftn_onnx_inverse_normalization(
self: TFloat,
normalization: int,
signal_size: TFloat,
) -> TFloat:
"""Standard complex to complex or real to complex FFT (forward or backward).

This is a private shared function for implementing the various FFT functions.

Args:
self: The input tensor.
dims: The dimensions to apply FFT.
normalization: The normalization mode.
inverse: Whether to compute the inverse FFT.
onesided: Whether to compute the one-sided FFT, which retains only the
positive frequencies.

Returns:
The transformed tensor.
"""

# NOTE: trace_only because we need to process each dimension in a loop
# NOTE: SymInt dim is not support because DFT-17 needs a static axis
# TODO(justinchuby): Make dim dynamic and remove trace_only when ONNX provides support

# The 0-th dimension in ONNX DFT-17 is the batch dimension. We need to add a new
# dimension at the beginning to represent the batch dimension.
transformed = op.Unsqueeze(self, axes=[0])

# Add 1 to account for the batch dimension when counting axes from the left
new_dims = [dim_ + 1 if dim_ >= 0 else dim_ for dim_ in dims]

for dim in new_dims[:-1]:
transformed = op.DFT(transformed, axis=dim, inverse=inverse, onesided=False)

# Torch computers one-sided FFT on the last dimension only.
if onesided:
transformed = op.DFT(transformed, axis=new_dims[-1], inverse=inverse, onesided=True)
else:
transformed = op.DFT(transformed, axis=new_dims[-1], inverse=inverse, onesided=False)

# Remove the batch dimension
transformed = op.Squeeze(transformed, axes=[0])

return _fftn_onnx_normalization(self, transformed, normalization, not inverse, dims)
"""Normalize in backward direction, accounting for what op.DFT does."""
# TODO: Make more efficient
# Norm values defined in https://github.com/pytorch/pytorch/blob/758d78790164bfb041555daed380de96e06f78a3/aten/src/ATen/native/SpectralOps.cpp#L117-L131
# Norm modes: https://github.com/pytorch/pytorch/blob/758d78790164bfb041555daed380de96e06f78a3/aten/src/ATen/native/SpectralOpsUtils.h#L15-L19
# Modes:
# 0: no normalization (backward)
# 1: "ortho" - divide by 1/sqrt(signal_size) (ortho)
# 2: divide by signal_size (forward)
if normalization == 1:
self = op.Mul(self, op.Sqrt(signal_size))
elif normalization == 0:
self = op.Mul(self, signal_size)
return self


@torch_op("aten::_fft_c2c", trace_only=True, complex=True)
Expand All @@ -124,39 +68,77 @@ def aten__fft_c2c(
Standard complex to complex FFT (forward or backward).
"""

# NOTE: trace_only because we need to negate forward
# NOTE: SymInt dim is not support because DFT-17 needs a static axis
# TODO(justinchuby): Make dim dynamic and remove trace_only when ONNX provides support
# NOTE: SymInt dim is not supported because DFT-17 needs a static axis

# ONNX DFT input assumes the last dimension is the complex dimension.
# Thus dim=-1 in PyTorch is dim=-2 in ONNX.
self_rank = len(self.shape)

# ONNX DFT input assumes the last dimension is the complex dimension.
# Thus dim=-1 in PyTorch is dim=-2 in ONNX.
dim = [d - 1 if d < 0 else d for d in dim]
return _fftn_onnx(self, dim, normalization, inverse=not forward, onesided=False)
dim = [(d - 1) + self_rank if d < 0 else d for d in dim]

unsqueeze_first_dim = 0 in dim
if unsqueeze_first_dim:
transformed = op.Unsqueeze(self, axes=[0])
# Add 1 to account for the batch dimension when counting axes from the left
dim = [dim_ + 1 if dim_ >= 0 else dim_ for dim_ in dim]
else:
transformed = self

for dimension in reversed(dim):
transformed = op.DFT(transformed, axis=dimension, inverse=not forward, onesided=False)
if forward:
transformed = _fftn_onnx_normalization(transformed, normalization, op.CastLike(self.shape[dimension - unsqueeze_first_dim], transformed))
else:
transformed = _fftn_onnx_inverse_normalization(
transformed, normalization, op.CastLike(self.shape[dimension - unsqueeze_first_dim], transformed)
)

if unsqueeze_first_dim:
transformed = op.Squeeze(transformed, axes=[0])

return transformed


@torch_op("aten::_fft_c2r", trace_only=True, complex=True)
def aten__fft_c2r(
self: TFloat,
dim: Sequence[int],
normalization: int,
last_dim_size: INT64, # pylint: disable=unused-argument
last_dim_size: INT64,
) -> TFloat:
"""_fft_c2r(Tensor self, int[] dim, int normalization, SymInt last_dim_size) -> Tensor

Complex to real inverse FFT.
"""

# TODO(justinchuby): Figure out what last_dim_size does

self_rank = len(self.shape)

# ONNX DFT input assumes the last dimension is the complex dimension.
# Thus dim=-1 in PyTorch is dim=-2 in ONNX.
dim = [(d - 1) + self_rank if d < 0 else d for d in dim]
transformed = _fftn_onnx(self, dim, normalization, inverse=True, onesided=False)
# Take only the real part
real_part = op.Slice(transformed, axes=[-1], starts=[0], ends=[1])

return op.Squeeze(real_part, axes=[-1])
unsqueeze_first_dim = 0 in dim
if unsqueeze_first_dim:
transformed = op.Unsqueeze(self, axes=[0])
# Add 1 to account for the batch dimension when counting axes from the left
dim = [dim_ + 1 if dim_ >= 0 else dim_ for dim_ in dim]
else:
transformed = self

for index, dimension in enumerate(reversed(dim)):
if index > 0:
transformed = op.DFT(transformed, axis=dimension, inverse=False, onesided=False)
transformed = _fftn_onnx_normalization(transformed, normalization, op.CastLike(self.shape[dimension - unsqueeze_first_dim], transformed))
else:
onesided = (last_dim_size == op.CastLike(self.shape[dimension - unsqueeze_first_dim], last_dim_size))
transformed = op.DFT(transformed, axis=dimension, inverse=False, onesided=onesided)
transformed = _fftn_onnx_normalization(transformed, normalization, op.CastLike(self.shape[dimension - unsqueeze_first_dim], transformed))

if unsqueeze_first_dim:
transformed = op.Squeeze(transformed, axes=[0])

return transformed


@torch_op("aten::_fft_r2c", trace_only=True)
Expand All @@ -168,17 +150,36 @@ def aten__fft_r2c(
Real to complex forward FFT.
"""

# Add a new dimension at the end
signal = op.Unsqueeze(self, axes=[-1])
# No need to fill the imaginary part because ONNX DFT accepts real inputs
# https://onnx.ai/onnx/operators/onnx__DFT.html#inputs

self_rank = len(self.shape)

# Add a new dimension at the end
transformed = op.Unsqueeze(self, axes=[-1])

# ONNX DFT input assumes the last dimension is the complex dimension.
# Thus dim=-1 in PyTorch is dim=-2 in ONNX.
dim = [(d - 1) + self_rank if d < 0 else d for d in dim]

return _fftn_onnx(signal, dim, normalization, inverse=False, onesided=onesided)
unsqueeze_first_dim = 0 in dim
if unsqueeze_first_dim:
transformed = op.Unsqueeze(transformed, axes=[0])
# Add 1 to account for the batch dimension when counting axes from the left
dim = [dim_ + 1 if dim_ >= 0 else dim_ for dim_ in dim]

for idx, dimension in enumerate(reversed(dim)):
if idx > 0:
transformed = op.DFT(transformed, axis=dimension, inverse=False, onesided=False)
else:
# Torch computes one-sided FFT on the last dimension only.
transformed = op.DFT(transformed, axis=dimension, inverse=False, onesided=onesided)
transformed = _fftn_onnx_normalization(transformed, normalization, op.CastLike(self.shape[dimension - unsqueeze_first_dim], transformed))

if unsqueeze_first_dim:
transformed = op.Squeeze(transformed, axes=[0])

return transformed


def aten_fft_fft(
Expand Down
38 changes: 19 additions & 19 deletions onnxscript/ir/tensor_adapters_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,25 +54,25 @@ def test_numpy_returns_correct_dtype(self, dtype: torch.dtype, np_dtype):

@parameterized.parameterized.expand(
[
(torch.bfloat16),
(torch.bool),
(torch.complex128),
(torch.complex64),
(torch.float16),
(torch.float32),
(torch.float64),
(torch.float8_e4m3fn),
(torch.float8_e4m3fnuz),
(torch.float8_e5m2),
(torch.float8_e5m2fnuz),
(torch.int16),
(torch.int32),
(torch.int64),
(torch.int8),
(torch.uint16),
(torch.uint32),
(torch.uint64),
(torch.uint8),
(torch.bfloat16,),
(torch.bool,),
(torch.complex128,),
(torch.complex64,),
(torch.float16,),
(torch.float32,),
(torch.float64,),
(torch.float8_e4m3fn,),
(torch.float8_e4m3fnuz,),
(torch.float8_e5m2,),
(torch.float8_e5m2fnuz,),
(torch.int16,),
(torch.int32,),
(torch.int64,),
(torch.int8,),
(torch.uint16,),
(torch.uint32,),
(torch.uint64,),
(torch.uint8,),
],
)
def test_tobytes(self, dtype: torch.dtype):
Expand Down
5 changes: 5 additions & 0 deletions tests/function_libs/torch_lib/extra_opinfo.py
Original file line number Diff line number Diff line change
Expand Up @@ -700,9 +700,14 @@ def sample_inputs__fft_c2r(self, device, dtype, requires_grad=False, **_):
(0, 1),
(0, 1, 2),
]:
# Slice
yield opinfo_core.SampleInput(
nd_tensor(), dim=dim, normalization=normalization, last_dim_size=6
)
# Pad
yield opinfo_core.SampleInput(
nd_tensor(), dim=dim, normalization=normalization, last_dim_size=64
)


def _index_variable_bool(shape, max_indices, device):
Expand Down
3 changes: 0 additions & 3 deletions tests/function_libs/torch_lib/ops_test_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -452,9 +452,6 @@ def _where_input_wrangler(
fft_ops.aten__fft_c2r,
tolerance={torch.complex64: (3e-3, 1.8e-4)},
complex=True,
).xfail(
dtypes=(torch.complex64,),
reason="fixme: the result is wrong: https://github.com/microsoft/onnxscript/pull/926",
),
TorchLibOpInfo(
"ops.aten._fft_r2c", # Custom from extra_opinfo
Expand Down
Loading