Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
91 changes: 46 additions & 45 deletions Online/inference/04-FCN/mindspore_fcn8s.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -382,6 +382,7 @@
"outputs": [],
"source": [
"import mindspore.nn as nn\n",
"import mindspore as mint\n",
"\n",
"class FCN8s(nn.Cell):\n",
" def __init__(self, n_class):\n",
Expand All @@ -395,89 +396,89 @@
" self.n_class = n_class\n",
" # 卷积块1:两个3x3卷积层和BN层,后接最大池化层\n",
" self.conv1 = nn.SequentialCell(\n",
" nn.Conv2d(in_channels=3, out_channels=64,\n",
" mint.nn.Conv2d(in_channels=3, out_channels=64,\n",
" kernel_size=3, weight_init='xavier_uniform'),\n",
" nn.BatchNorm2d(64),\n",
" nn.ReLU(),\n",
" nn.Conv2d(in_channels=64, out_channels=64,\n",
" mint.nn.BatchNorm2d(64),\n",
" mint.nn.ReLU(),\n",
" mint.nn.Conv2d(in_channels=64, out_channels=64,\n",
" kernel_size=3, weight_init='xavier_uniform'),\n",
" nn.BatchNorm2d(64),\n",
" nn.ReLU()\n",
" mint.nn.BatchNorm2d(64),\n",
" mint.nn.ReLU()\n",
" )\n",
" self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)\n",
" # 卷积块2:两个3x3卷积层和BN层,后接最大池化层\n",
" self.conv2 = nn.SequentialCell(\n",
" nn.Conv2d(in_channels=64, out_channels=128,\n",
" mint.nn.Conv2d(in_channels=64, out_channels=128,\n",
" kernel_size=3, weight_init='xavier_uniform'),\n",
" nn.BatchNorm2d(128),\n",
" nn.ReLU(),\n",
" nn.Conv2d(in_channels=128, out_channels=128,\n",
" mint.nn.BatchNorm2d(128),\n",
" mint.nn.ReLU(),\n",
" mint.nn.Conv2d(in_channels=128, out_channels=128,\n",
" kernel_size=3, weight_init='xavier_uniform'),\n",
" nn.BatchNorm2d(128),\n",
" nn.ReLU()\n",
" mint.nn.BatchNorm2d(128),\n",
" mint.nn.ReLU()\n",
" )\n",
" self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)\n",
" # 卷积块3:三个3x3卷积层和BN层,后接最大池化层\n",
" self.conv3 = nn.SequentialCell(\n",
" nn.Conv2d(in_channels=128, out_channels=256,\n",
" mint.nn.Conv2d(in_channels=128, out_channels=256,\n",
" kernel_size=3, weight_init='xavier_uniform'),\n",
" nn.BatchNorm2d(256),\n",
" nn.ReLU(),\n",
" nn.Conv2d(in_channels=256, out_channels=256,\n",
" mint.nn.BatchNorm2d(256),\n",
" mint.nn.ReLU(),\n",
" mint.nn.Conv2d(in_channels=256, out_channels=256,\n",
" kernel_size=3, weight_init='xavier_uniform'),\n",
" nn.BatchNorm2d(256),\n",
" nn.ReLU(),\n",
" nn.Conv2d(in_channels=256, out_channels=256,\n",
" mint.nn.BatchNorm2d(256),\n",
" mint.nn.ReLU(),\n",
" mint.nn.Conv2d(in_channels=256, out_channels=256,\n",
" kernel_size=3, weight_init='xavier_uniform'),\n",
" nn.BatchNorm2d(256),\n",
" nn.ReLU()\n",
" mint.nn.BatchNorm2d(256),\n",
" mint.nn.ReLU()\n",
" )\n",
" self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)\n",
" # 卷积块4:三个3x3卷积层和BN层,后接最大池化层\n",
" self.conv4 = nn.SequentialCell(\n",
" nn.Conv2d(in_channels=256, out_channels=512,\n",
" mint.nn.Conv2d(in_channels=256, out_channels=512,\n",
" kernel_size=3, weight_init='xavier_uniform'),\n",
" nn.BatchNorm2d(512),\n",
" nn.ReLU(),\n",
" nn.Conv2d(in_channels=512, out_channels=512,\n",
" mint.nn.BatchNorm2d(512),\n",
" mint.nn.ReLU(),\n",
" mint.nn.Conv2d(in_channels=512, out_channels=512,\n",
" kernel_size=3, weight_init='xavier_uniform'),\n",
" nn.BatchNorm2d(512),\n",
" nn.ReLU(),\n",
" nn.Conv2d(in_channels=512, out_channels=512,\n",
" mint.nn.BatchNorm2d(512),\n",
" mint.nn.ReLU(),\n",
" mint.nn.Conv2d(in_channels=512, out_channels=512,\n",
" kernel_size=3, weight_init='xavier_uniform'),\n",
" nn.BatchNorm2d(512),\n",
" nn.ReLU()\n",
" mint.nn.BatchNorm2d(512),\n",
" mint.nn.ReLU()\n",
" )\n",
" self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2)\n",
" # 卷积块5:三个3x3卷积层和BN层,后接最大池化层\n",
" self.conv5 = nn.SequentialCell(\n",
" nn.Conv2d(in_channels=512, out_channels=512,\n",
" mint.nn.Conv2d(in_channels=512, out_channels=512,\n",
" kernel_size=3, weight_init='xavier_uniform'),\n",
" nn.BatchNorm2d(512),\n",
" nn.ReLU(),\n",
" nn.Conv2d(in_channels=512, out_channels=512,\n",
" mint.nn.BatchNorm2d(512),\n",
" mint.nn.ReLU(),\n",
" mint.nn.Conv2d(in_channels=512, out_channels=512,\n",
" kernel_size=3, weight_init='xavier_uniform'),\n",
" nn.BatchNorm2d(512),\n",
" nn.ReLU(),\n",
" nn.Conv2d(in_channels=512, out_channels=512,\n",
" mint.nn.BatchNorm2d(512),\n",
" mint.nn.ReLU(),\n",
" mint.nn.Conv2d(in_channels=512, out_channels=512,\n",
" kernel_size=3, weight_init='xavier_uniform'),\n",
" nn.BatchNorm2d(512),\n",
" nn.ReLU()\n",
" mint.nn.BatchNorm2d(512),\n",
" mint.nn.ReLU()\n",
" )\n",
" self.pool5 = nn.MaxPool2d(kernel_size=2, stride=2)\n",
" # 全卷积层6:7x7卷积层和BN层,用于代替全连接层\n",
" self.conv6 = nn.SequentialCell(\n",
" nn.Conv2d(in_channels=512, out_channels=4096,\n",
" mint.nn.Conv2d(in_channels=512, out_channels=4096,\n",
" kernel_size=7, weight_init='xavier_uniform'),\n",
" nn.BatchNorm2d(4096),\n",
" nn.ReLU(),\n",
" mint.nn.BatchNorm2d(4096),\n",
" mint.nn.ReLU(),\n",
" )\n",
" # 全卷积层7:1x1卷积层和BN层,用于代替全连接层\n",
" self.conv7 = nn.SequentialCell(\n",
" nn.Conv2d(in_channels=4096, out_channels=4096,\n",
" mint.nn.Conv2d(in_channels=4096, out_channels=4096,\n",
" kernel_size=1, weight_init='xavier_uniform'),\n",
" nn.BatchNorm2d(4096),\n",
" nn.ReLU(),\n",
" mint.nn.BatchNorm2d(4096),\n",
" mint.nn.ReLU(),\n",
" )\n",
" # 产生分数图的层\n",
" self.score_fr = nn.Conv2d(in_channels=4096, out_channels=self.n_class,\n",
Expand Down