Skip to content
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
44 changes: 44 additions & 0 deletions closed/NVIDIA/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -382,6 +382,50 @@ $ make run RUN_ARGS="--benchmarks=resnet50,bert --scenarios=offline,server"
```
**If you run into issues, invalid results, or would like to improve your performance,** **read** `documentation/performance_tuning_guide.md`.

### Multinode runs

From within the container, installing the triton software:

```
$ make clone_triton && make build_triton
```

Generating the triton config files(after generating the engines):

```
$ make generate_triton_config RUN_ARGS="--benchmarks=llama2-70b \ #or other benchmarks
--scenarios=Offline \
--harness_type=triton \
--accuracy_target=0.999 \ # or 0.99
--engine_dir=/path/to/engines \”
```

After modifying the `start_triton.sh` based on your specific node config, start the triton engines on each node:

```
$ /work/start_triton.sh
```

Keeping the engines running, enter one node's(considered the master node hereon) container from a different shell:

```
$ docker exec -it "image-name" bash
```

Start the accuracy/throughput runs through seperate triton-client frontends for each node:

```
$ make run_harness RUN_ARGS="\
--benchmarks=llama2-70b \ # or the other benchmarks
--scenarios=Offline \
--harness_type=triton \
--inference_server=triton \
--accuracy_target=0.999 \ # or 0.99
--triton_skip_server_spawn \
--triton_grpc_ports='ip_of_master_node:8001|ip_of_worker_node_1:8001|ip_of_worker_node_2:8001...'"
```


### How do I run the accuracy checks?

You can run the harness for accuracy checks using the `--test_mode=AccuracyOnly` flag:
Expand Down
93 changes: 73 additions & 20 deletions closed/NVIDIA/configs/llama2-70b/Offline/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ class HopperOfflineGPUBaseConfig(OfflineGPUBaseConfig):

trtllm_build_flags = {
'tensor_parallelism': 1,
'pipeline_parallelism': 1,
'pipeline_parallelism': 2,
}


Expand All @@ -54,11 +54,10 @@ class BlackwellOfflineGPUBaseConfig(OfflineGPUBaseConfig):

trtllm_build_flags = {
'tensor_parallelism': 1,
'pipeline_parallelism': 1,
'pipeline_parallelism': 2,
'norm_quant_fusion': 'enable'
}


@ConfigRegistry.register(HarnessType.Custom, AccuracyTarget.k_99, PowerSetting.MaxP)
class GH200_144GB_aarch64x1(HopperOfflineGPUBaseConfig):
system = KnownSystem.GH200_144GB_ARMx1
Expand Down Expand Up @@ -87,14 +86,12 @@ class GH200_144GB_aarch64x2(GH200_144GB_aarch64x1):
class GH200_144GB_aarch64x2_HighAccuracy(GH200_144GB_aarch64x2):
pass


@ConfigRegistry.register(HarnessType.Custom, AccuracyTarget.k_99, PowerSetting.MaxP, "PP2")
class H100_SXM_80GB_PP2x1(HopperOfflineGPUBaseConfig):
system = KnownSystem.H100_SXM_80GBx2
vboost_slider = 0

gpu_batch_size = {'llama2-70b': 1024}
offline_expected_qps = 27.5
offline_expected_qps = 75
trtllm_build_flags = {
'max_num_tokens': 1024,
'tensor_parallelism': 1,
Expand All @@ -117,21 +114,58 @@ class H100_SXM_80GB_Triton_PP2x1(HopperOfflineGPUBaseConfig):
triton_num_frontends_per_model = 1

gpu_batch_size = {'llama2-70b': 2048}
offline_expected_qps = 25
offline_expected_qps = 75
trtllm_build_flags = {
'max_num_tokens': 1024,
'tensor_parallelism': 1,
'pipeline_parallelism': 2,
}
trtllm_runtime_flags = {'max_num_tokens': 1024}

@ConfigRegistry.register(
HarnessType.Custom,
AccuracyTarget.k_99_9,
PowerSetting.MaxP
)
class H100_SXM_80GB_Custom_HighAccuracy(H100_SXM_80GB_Triton_PP2x1):
system = KnownSystem.H100_SXM_80GBx1
use_triton = True
triton_num_clients_per_frontend = 1
triton_num_frontends_per_model = 1
gpu_batch_size = {'llama2-70b': 1024}
offline_expected_qps = 75
trtllm_build_flags = {
'max_num_tokens': 1024,
'tensor_parallelism': 1,
'pipeline_parallelism': 2,
'reduce_fusion': 'enable',
'gemm_swiglu_plugin': 'fp8',
}
trtllm_runtime_flags = {
'max_num_tokens': 1024,
'kvcache_free_gpu_mem_frac': 0.95,
}


@ConfigRegistry.register(
HarnessType.Triton,
AccuracyTarget.k_99_9,
PowerSetting.MaxP
)
class H100_SXM_80GB_Triton_PP2x1_HighAccuracy(H100_SXM_80GB_Triton_PP2x1):
pass
@ConfigRegistry.register(
HarnessType.Custom,
AccuracyTarget.k_99_9,
PowerSetting.MaxP
)
class H100_SXM_80GB_Triton_PP2x1_HighAccuracy_CustomAlias(H100_SXM_80GB_Triton_PP2x1_HighAccuracy):
pass

@ConfigRegistry.register(HarnessType.Triton, AccuracyTarget.k_99, PowerSetting.MaxP, "PP2")
class H100_SXM_80GB_Triton_PP2x4(H100_SXM_80GB_Triton_PP2x1):
system = KnownSystem.H100_SXM_80GBx8
offline_expected_qps = 25 * 4


@ConfigRegistry.register(HarnessType.Custom, AccuracyTarget.k_99, PowerSetting.MaxP, "PP2")
class H100_SXM_80GB_PP2x2(H100_SXM_80GB_PP2x1):
system = KnownSystem.H100_SXM_80GBx4
Expand Down Expand Up @@ -182,21 +216,13 @@ class H100_NVL_94GB_TP2x1(HopperOfflineGPUBaseConfig):
@ConfigRegistry.register(HarnessType.Custom, AccuracyTarget.k_99, PowerSetting.MaxP, "TP2")
class H100_NVL_94GB_TP2x2(H100_NVL_94GB_TP2x1):
system = KnownSystem.H100_NVL_94GBx4
offline_expected_qps = 25
offline_expected_qps = 10


@ConfigRegistry.register(HarnessType.Custom, AccuracyTarget.k_99, PowerSetting.MaxP, "TP2")
class H100_NVL_94GB_TP2x4(H100_NVL_94GB_TP2x2):
system = KnownSystem.H100_NVL_94GBx8
offline_expected_qps = 50


@ConfigRegistry.register(HarnessType.Custom, AccuracyTarget.k_99, PowerSetting.MaxQ, "TP2")
class H100_NVL_94GB_MaxQ_TP2x4(H100_NVL_94GB_TP2x4):
offline_expected_qps = 45
power_limit = 350


@ConfigRegistry.register(HarnessType.Custom, AccuracyTarget.k_99_9, PowerSetting.MaxP, "TP2")
class H100_NVL_94GB_HighAccuracy_TP2x1(H100_NVL_94GB_TP2x1):
pass
Expand Down Expand Up @@ -362,7 +388,34 @@ class B200_SXM_180GBx8(B200_SXM_180GBx1):
system = KnownSystem.B200_SXM_180GBx8
offline_expected_qps = B200_SXM_180GBx1.offline_expected_qps * 8

@ConfigRegistry.register(
HarnessType.Triton,
AccuracyTarget.k_99,
PowerSetting.MaxP
)
class DGX_H100_H100_SXM_80GBx2_Triton(H100_SXM_80GB_Triton_PP2x1):
system = KnownSystem.H100_SXM_80GBx2

@ConfigRegistry.register(HarnessType.Custom, AccuracyTarget.k_99_9, PowerSetting.MaxP)
class B200_SXM_180GBx8_HighAccuracy(B200_SXM_180GBx8):
@ConfigRegistry.register(
HarnessType.Triton,
AccuracyTarget.k_99_9,
PowerSetting.MaxP
)
class DGX_H100_H100_SXM_80GBx2_Triton_HA(DGX_H100_H100_SXM_80GBx2_Triton):
pass

@ConfigRegistry.register(
HarnessType.Triton,
AccuracyTarget.k_99,
PowerSetting.MaxP
)
class DGX_H100_H100_SXM_80GBx1_Triton(H100_SXM_80GB_Triton_PP2x1):
system = KnownSystem.H100_SXM_80GBx1

@ConfigRegistry.register(
HarnessType.Triton,
AccuracyTarget.k_99_9,
PowerSetting.MaxP
)
class DGX_H100_H100_SXM_80GBx1_Triton_HA(DGX_H100_H100_SXM_80GBx1_Triton):
pass
15 changes: 15 additions & 0 deletions closed/NVIDIA/start_triton.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
#!/bin/bash
MODEL_REPO=/path/to/repo_0 #created by triton config builds
TRITON_BIN=/opt/tritonserver/bin/tritonserver
GRPC_PORT=8001
HTTP_PORT=8000
METRICS_PORT=8002

WORLD_SIZE= #number of GPUs per node

exec mpirun -n ${WORLD_SIZE} --allow-run-as-root \
${TRITON_BIN} \
--model-repository=${MODEL_REPO} \
--grpc-port=${GRPC_PORT} \
--http-port=${HTTP_PORT} \
--metrics-port=${METRICS_PORT}