Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

enhance parsing model response function for more edge cases #2122

Merged
merged 5 commits into from
Feb 19, 2024
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -5,12 +5,20 @@

package org.opensearch.ml.engine.algorithms.agent;

import static org.opensearch.ml.common.utils.StringUtils.getParameterMap;
import static org.opensearch.ml.common.utils.StringUtils.gson;
import static org.opensearch.ml.common.utils.StringUtils.isJson;
import static org.opensearch.ml.common.utils.StringUtils.toJson;
import static org.opensearch.ml.engine.algorithms.agent.MLAgentExecutor.MESSAGE_HISTORY_LIMIT;
import static org.opensearch.ml.engine.algorithms.agent.MLChatAgentRunner.ACTION;
import static org.opensearch.ml.engine.algorithms.agent.MLChatAgentRunner.ACTION_INPUT;
import static org.opensearch.ml.engine.algorithms.agent.MLChatAgentRunner.CHAT_HISTORY;
import static org.opensearch.ml.engine.algorithms.agent.MLChatAgentRunner.CONTEXT;
import static org.opensearch.ml.engine.algorithms.agent.MLChatAgentRunner.EXAMPLES;
import static org.opensearch.ml.engine.algorithms.agent.MLChatAgentRunner.FINAL_ANSWER;
import static org.opensearch.ml.engine.algorithms.agent.MLChatAgentRunner.OS_INDICES;
import static org.opensearch.ml.engine.algorithms.agent.MLChatAgentRunner.THOUGHT;
import static org.opensearch.ml.engine.algorithms.agent.MLChatAgentRunner.THOUGHT_RESPONSE;
import static org.opensearch.ml.engine.algorithms.agent.MLChatAgentRunner.TOOL_DESCRIPTIONS;
import static org.opensearch.ml.engine.algorithms.agent.MLChatAgentRunner.TOOL_NAMES;
import static org.opensearch.ml.engine.memory.ConversationIndexMemory.LAST_N_INTERACTIONS;
Expand All @@ -19,10 +27,13 @@
import java.security.PrivilegedActionException;
import java.security.PrivilegedExceptionAction;
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java.util.Locale;
import java.util.Map;
import java.util.Optional;
import java.util.Set;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

Expand All @@ -33,7 +44,11 @@
import org.opensearch.ml.common.output.model.ModelTensor;
import org.opensearch.ml.common.output.model.ModelTensorOutput;
import org.opensearch.ml.common.spi.tools.Tool;
import org.opensearch.ml.common.utils.StringUtils;

import lombok.extern.log4j.Log4j2;

@Log4j2
public class AgentUtils {

public static final String SELECTED_TOOLS = "selected_tools";
Expand Down Expand Up @@ -167,23 +182,166 @@ public static String extractModelResponseJson(String text) {
return extractModelResponseJson(text, null);
}

public static String extractModelResponseJson(String text, List<String> llmResponsePatterns) {
Pattern jsonBlockPattern = Pattern.compile("```json\\s*([\\s\\S]+?)\\s*```");
Matcher jsonBlockMatcher = jsonBlockPattern.matcher(text);

if (jsonBlockMatcher.find()) {
return jsonBlockMatcher.group(1);
public static Map<String, String> parseLLMOutput(
ModelTensorOutput tmpModelTensorOutput,
List<String> llmResponsePatterns,
Set<String> inputTools
) {
Map<String, String> modelOutput = new HashMap<>();
Map<String, ?> dataAsMap = tmpModelTensorOutput.getMlModelOutputs().get(0).getMlModelTensors().get(0).getDataAsMap();
if (dataAsMap.size() == 1 && dataAsMap.containsKey("response")) {
String llmReasoningResponse = (String) dataAsMap.get("response");
String thoughtResponse = null;
try {
thoughtResponse = extractModelResponseJson(llmReasoningResponse, llmResponsePatterns);
modelOutput.put(THOUGHT_RESPONSE, thoughtResponse);
} catch (IllegalArgumentException e) {
modelOutput.put(THOUGHT_RESPONSE, llmReasoningResponse);
thoughtResponse = llmReasoningResponse;
}
parseThoughtResponse(modelOutput, thoughtResponse);
} else {
String matchedPart = findMatchedPart(text, MODEL_RESPONSE_PATTERNS);
if (matchedPart == null && llmResponsePatterns != null) {
// If no match is found, try additional patterns if provided
matchedPart = findMatchedPart(text, llmResponsePatterns);
extractParams(modelOutput, dataAsMap, THOUGHT);
extractParams(modelOutput, dataAsMap, ACTION);
extractParams(modelOutput, dataAsMap, ACTION_INPUT);
extractParams(modelOutput, dataAsMap, FINAL_ANSWER);
try {
modelOutput.put(THOUGHT_RESPONSE, StringUtils.toJson(dataAsMap));
} catch (Exception e) {
log.warn("Failed to parse model response", e);
}
}
String action = modelOutput.get(ACTION);
if (action != null) {
String matchedTool = getMatchedTool(inputTools, action);
if (matchedTool != null) {
modelOutput.put(ACTION, matchedTool);
} else {
modelOutput.remove(ACTION);
}
}
if (!modelOutput.containsKey(ACTION) && !modelOutput.containsKey(FINAL_ANSWER)) {
modelOutput.put(FINAL_ANSWER, modelOutput.get(THOUGHT_RESPONSE));
}
return modelOutput;
}

public static String getMatchedTool(Collection<String> tools, String action) {
for (String tool : tools) {
if (action.toLowerCase(Locale.ROOT).contains(tool.toLowerCase(Locale.ROOT))) {
return tool;
}
}
return null;
}

public static void extractParams(Map<String, String> modelOutput, Map<String, ?> dataAsMap, String paramName) {
if (dataAsMap.containsKey(paramName)) {
modelOutput.put(paramName, toJson(dataAsMap.get(paramName)));
}
}

public static String extractModelResponseJson(String text, List<String> llmResponsePatterns) {
if (text.contains("```json")) {
text = text.substring(text.indexOf("```json") + "```json".length());
if (text.contains("```")) {
text = text.substring(0, text.lastIndexOf("```"));
}
}
text = text.trim();
if (isJson(text)) {
return text;
}
String matchedPart = null;
if (llmResponsePatterns != null) {
matchedPart = findMatchedPart(text, llmResponsePatterns);
if (matchedPart != null) {
return matchedPart;
}
throw new IllegalArgumentException("Model output is invalid");
}
matchedPart = findMatchedPart(text, MODEL_RESPONSE_PATTERNS);
if (matchedPart != null) {
return matchedPart;
}
throw new IllegalArgumentException("Model output is invalid");
}

public static void parseThoughtResponse(Map<String, String> modelOutput, String thoughtResponse) {
if (thoughtResponse != null) {
if (isJson(thoughtResponse)) {
modelOutput.putAll(getParameterMap(gson.fromJson(thoughtResponse, Map.class)));
} else {// sometimes LLM return invalid json response
String thought = extractThought(thoughtResponse);
String action = extractAction(thoughtResponse);
String actionInput = extractActionInput(thoughtResponse);
String finalAnswer = extractFinalAnswer(thoughtResponse);
if (thought != null) {
modelOutput.put(THOUGHT, thought);
}
if (action != null) {
modelOutput.put(ACTION, action);
}
if (actionInput != null) {
modelOutput.put(ACTION_INPUT, actionInput);
}
if (finalAnswer != null) {
modelOutput.put(FINAL_ANSWER, finalAnswer);
}
}
}
}

public static String extractFinalAnswer(String text) {
String result = null;
if (text.contains("\"final_answer\"")) {
String pattern = "\"final_answer\"\\s*:\\s*\"(.*?)$";
Pattern jsonBlockPattern = Pattern.compile(pattern, Pattern.DOTALL);
Matcher jsonBlockMatcher = jsonBlockPattern.matcher(text);
if (jsonBlockMatcher.find()) {
result = jsonBlockMatcher.group(1);
}
}
return result;
}

public static String extractThought(String text) {
String result = null;
if (text.contains("\"thought\"")) {
String pattern = "\"thought\"\\s*:\\s*\"(.*?)\"\\s*,\\s*[\"final_answer\"|\"action\"]";
Pattern jsonBlockPattern = Pattern.compile(pattern, Pattern.DOTALL);
Matcher jsonBlockMatcher = jsonBlockPattern.matcher(text);
if (jsonBlockMatcher.find()) {
result = jsonBlockMatcher.group(1);
}
}
return result;
}

public static String extractAction(String text) {
String result = null;
if (text.contains("\"action\"")) {
String pattern = "\"action\"\\s*:\\s*\"(.*?)(?:\"action_input\"|$)";
Pattern jsonBlockPattern = Pattern.compile(pattern, Pattern.DOTALL);
Matcher jsonBlockMatcher = jsonBlockPattern.matcher(text);
if (jsonBlockMatcher.find()) {
result = jsonBlockMatcher.group(1);
}
}
return result;
}

public static String extractActionInput(String text) {
String result = null;
if (text.contains("\"action_input\"")) {
String pattern = "\"action_input\"\\s*:\\s*\"((?:[^\\\"]|\\\")*)\"";
Pattern jsonBlockPattern = Pattern.compile(pattern, Pattern.DOTALL); // Add Pattern.DOTALL to match across newlines
Matcher jsonBlockMatcher = jsonBlockPattern.matcher(text);
if (jsonBlockMatcher.find()) {
result = jsonBlockMatcher.group(1);
result = result.replace("\\\"", "\"");
}
}
return result;
}

public static String findMatchedPart(String text, List<String> patternList) {
Expand Down
Loading