Object-Relative Navigation: ObjectReact [CoRL'25] | TANGO [ICRA'25] | RoboHop [ICRA'24]
Official code release to test different controllers / trajectory planners.
Setup conda environment (with habitat & ultralytics)
(see this to setup without habitat)
conda create -n nav
conda activate nav
conda install python=3.9 mamba -c conda-forge
mamba install pip numpy matplotlib pytorch torchvision pytorch-cuda=11.8 opencv=4.6 cmake=3.14.0 habitat-sim withbullet numba=0.57 pyyaml ipykernel networkx h5py natsort open-clip-torch transformers einops scikit-learn kornia pgmpy python-igraph pyvis -c pytorch -c nvidia -c aihabitat -c conda-forge
mamba install -c conda-forge ultralytics
mamba install -c conda-forge tyro faiss-gpu scikit-image ipykernel spatialmath-python gdown utm seaborn wandb kaggle yacs
# setup git submodule (for objectreact controller)
git clone https://github.com/oravus/object-rel-nav.git
cd object-rel-nav/
git submodule update --init --recursive
# install habitat-lab
cd libs/
git clone https://github.com/facebookresearch/habitat-lab.git
cd habitat-lab/
git checkout v0.2.4
pip install -e habitat-lab
Download official Habitat data and our benchmark trajectories.
In ./data/
, sym link the following downloads as subdirs: hm3d v0.2
, instance_imagenav_hm3d_v3
, and hm3d_iin_val
.
-
Download official
hm3d v0.2
following instructions here (a free Matterport account required), eg val data for testing, specifically:- hm3d-val-glb-v0.2.tar (4G) - Download
- hm3d-val-habitat-v0.2.tar (3.3G) - Download
- hm3d-val-semantic-annots-v0.2.tar (2.0G) - Download
- hm3d-val-semantic-configs-v0.2.tar (40K) - Download
These downloaded
hm3d-val*
can be extracted to./data/hm3d_v0.2/val/
-
Download official
InstanceImageNav
challenge dataset from here (Direct Link | ~512 mb) -
Download our test trajectory data
hm3d_iin_val
andmaps_via_alt_goal
(for theshortcut
task) from HuggingFace:cd data/ huggingface-cli download oravus/objectreact_hm3d_iin --repo-type dataset --local-dir ./ --include "evaluation/**" unzip -q 'evaluation/*.zip' rm -r evaluation
Download controller models.
In model_weights/
:
- TANGO: Download depth anything model from here [1.3 GB] and its base vit from here [1.3 GB].
- PixNav: Download the original authors' provided checkpoint from our hosting here [208 MB].
- ObjectReact: Downloaded automatically from HuggingFace [18MB].
For quickly running a navigation episode using robohop controller (uses configs/defaults.yaml
, with comments explaining the parameters):
python main.py
To use ObjectReact or TANGO controller (tango.yaml
, or your own config), run as:
python main.py -c configs/object_react.yaml
Check the output dir ./out/
for output.log
and visualizations. The above config uses ground truth perception for a quick start, set goal_source='topological'
and edge_weight_str='e3d_max'
to use inferred perception.
python scripts/evaluate_objecreact.py <path to dir containing timestamped results subdirs>
To create a topological graph given a folder of RGB images, please see/run this example script:
python scripts/create_maps_hm3d.py ./data/hm3d_iin_val/ fast_sam None 0 1
Please see instructions here.
ObjectReact:
@inproceedings{garg2025objectreact,
title={ObjectReact: Learning Object-Relative Control for Visual Navigation},
author={Garg, Sourav and Craggs, Dustin and Bhat, Vineeth and Mares, Lachlan and Podgorski, Stefan and Krishna, Madhava and Dayoub, Feras and Reid, Ian},
booktitle={Conference on Robot Learning},
year={2025},
organization={PMLR}
}
TANGO:
@inproceedings{podgorski2025tango,
title={TANGO: Traversability-Aware Navigation with Local Metric Control for Topological Goals},
author={Podgorski, Stefan and Garg, Sourav and Hosseinzadeh, Mehdi and Mares, Lachlan and Dayoub, Feras and Reid, Ian},
booktitle={2025 IEEE International Conference on Robotics and Automation (ICRA)},
pages={2399--2406},
year={2025},
organization={IEEE}
}
RoboHop:
@inproceedings{garg2024robohop,
title={Robohop: Segment-based topological map representation for open-world visual navigation},
author={Garg, Sourav and Rana, Krishan and Hosseinzadeh, Mehdi and Mares, Lachlan and S{\"u}nderhauf, Niko and Dayoub, Feras and Reid, Ian},
booktitle={2024 IEEE International Conference on Robotics and Automation (ICRA)},
pages={4090--4097},
year={2024},
organization={IEEE}
}