Skip to content

prompt-engineering/awesome-prompt-engineering

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 

Repository files navigation

awesome-prompts

awesome for your to collections

LLMs

based on: 总结当下可用的大模型LLMs

Model 作者 Size 类型 开源?
LLaMa Meta AI 7B-65B Decoder open
OPT Meta AI 125M-175B Decoder open
T5 Google 220M-11B Encoder-Decoder open
mT5 Google 235M-13B Encoder-Decoder open
UL2 Google 20B Encoder-Decoder open
PaLM Google 540B Decoder no
LaMDA Google 2B-137B Decoder no
FLAN-T5 Google 同T5 Encoder-Decoder open
FLAN-UL2 Google 同U2 Encoder-Decoder open
FLAN-PaLM Google 同PaLM Decoder no
FLAN Google 同LaMDA Decoder no
BLOOM BigScience 176B Decoder open
T0 BigScience 3B Decoder open
BLOOMZ BigScience 同BLOOM Decoder open
mT0 BigScience 同T0 Decoder open
GPT-Neo EleutherAI 125M-2.7B Decoder open
GPT-NeoX EleutherAI 20B Decoder open
GPT3 OpenAI 175B (davinci) Decoder no
GPT4 OpenAI unknown OpenAI no
InstructGPT OpenAI 1.3B Decoder no
Alpaca Stanford 同LLaMa Decoder open
ChatGLM-6B Tsinghua University 6B Decoder open
GLM-130B Tsinghua University 130B Decoder open

Instruct/Prompt Tuning Data

based on 总结开源可用的Instruct/Prompt Tuning数据

数据集/项目名称 组织/作者 简介
Natural Instruction / Super-Natural Instruction Allen AI 包含61个NLP任务(Natural Instruction)和1600个NLP任务(Super-Natural Instruction)的指令数据
PromptSource / P3 BigScience 包含270个NLP任务的2000多个prompt模版(PromptSource)和规模在100M-1B之间的P3数据集
xMTF BigScience 包含13个NLP任务、46种语言的多语言prompt数据
HH-RLHF Anthropic 旨在训练Helpful and Harmless(HH)的LLMs的RLHF数据集
Unnatural Instruction orhonovich 使用GPT3生成64k的instruction prompt数据,经改写后得到240k条instruction数据
Self-Instruct yizhongw 使用LLMs生成prompt进行instruct-tuning的方法,引入Task pool和Quality filtering等概念
UnifiedSKG HKU 在Text-to-Text框架中加入knowledge grounding,将结构化数据序列化并嵌入到prompt中
Flan Collection Google 将Flan 2021数据与一些开源的instruction数据(P3,super-natural instruction等)进行合并
InstructDial prakharguptaz 在特定的一种任务类型(对话指令)上进行指令微调的尝试
Alpaca-LoRA tloen Low-Rank LLaMA Instruct-Tuning

Projects:

  • Prompt Engineering Guide - Guides, papers, lecture, and resources for prompt engineering
  • LangChain - ⚡ Building applications with LLMs through composability ⚡
    • ChatLangChain is an implementation of a locally hosted chatbot specifically focused on question answering over the LangChain documentation. Built with LangChain and FastAPI.
    • Langflow - LangFlow is a GUI for LangChain, designed with react-flow to provide an effortless way to experiment and prototype flows with drag-and-drop components and a chat box.
  • [Alpaca]
  • ChatRWKV - ChatRWKV is like ChatGPT but powered by RWKV (100% RNN) language model, and open source.
  • [GPT-j]

Infra

  • PEFT - Parameter-Efficient Fine-Tuning (PEFT) methods enable efficient adaptation of pre-trained language models (PLMs) to various downstream applications without fine-tuning all the model's parameters.

Patterns

Semantic Kernel

Semantic Kernel is designed to support and encapsulate several design patterns from the latest in AI research, such that developers can infuse their applications with complex skills like prompt chaining, recursive reasoning, summarization, zero/few-shot learning, contextual memory, long-term memory, embeddings, semantic indexing, planning, and accessing external knowledge stores as well as your own data.

Prompter Papers

  • MathPrompter: Mathematical Reasoning using Large Language Models

Releases

No releases published

Packages

No packages published