-
Notifications
You must be signed in to change notification settings - Fork 287
float8 training axiswise scaling support with per-gemm-argument configuration #940
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Stack from ghstack (oldest at bottom): |
🔗 Helpful Links🧪 See artifacts and rendered test results at hud.pytorch.org/pr/pytorch/ao/940
Note: Links to docs will display an error until the docs builds have been completed. ✅ No FailuresAs of commit b536435 with merge base e76db70 ( This comment was automatically generated by Dr. CI and updates every 15 minutes. |
This was referenced Sep 24, 2024
jainapurva
pushed a commit
that referenced
this pull request
Oct 9, 2024
…guration (#940) Summary: This PR finalizes the UX for axiswise scaling for float8 training, and introduces per-gemm-argument configurability to Float8Linear to enable exploration of future recipes. Not all combinations are supported yet. Specifically, the additional combination we now support and test is a recipe from @lw , where we do the following: ``` output_hp = input_fp8_axiswise_dim0 @ weight_t_axiswise_dim1 grad_input_hp = grad_output_fp8_axiswise_dim0 @ weight_fp8_tensorwise grad_weight_hp = input_t_hp @ grad_output_hp ``` Key characteristics of this recipe: 1. increased accuracy for `grad_weight`, which is important for real workloads 2. `output` and `weight` now only need to be scaled axiswise across a single dim compared to vanilla all-axiswise, which is more amenable to fast kernels Here is how a user can configure this: ```python # # short form # config = torchao.float8.config.recipe_name_to_linear_config(Float8LinearRecipeName.LW_AXISWISE_WITH_GW_HP) # # or, long form # # output_hp = input_fp8_axiswise_dim0 @ weight_t_axiswise_dim1 cc_i = CastConfig(scaling_granularity=ScalingGranularity.AXISWISE) cc_w = CastConfig(scaling_granularity=ScalingGranularity.AXISWISE) # grad_input_hp = grad_output_fp8_axiswise_dim0 @ weight_fp8_tensorwise cc_go = CastConfig(scaling_granularity=ScalingGranularity.AXISWISE) cc_w_go = CastConfig(scaling_granularity=ScalingGranularity.TENSORWISE) # grad_weight_hp = input_t_hp @ grad_output_hp cc_i_gw = CastConfig(scaling_type=ScalingType.DISABLED) cc_go_gw = CastConfig(scaling_type=ScalingType.DISABLED) # ensure fast_accum is on to get fast kernels gc_o = Float8GemmConfig(use_fast_accum=True) gc_gi = Float8GemmConfig(use_fast_accum=True) gc_gw = Float8GemmConfig(use_fast_accum=True) config = Float8Config( cast_config_input = cc_i, cast_config_weight = cc_w, cast_config_grad_output = cc_go, cast_config_input_for_grad_weight = cc_i_gw, cast_config_weight_for_grad_output = cc_w_go, cast_config_grad_output_for_grad_weight = cc_go_gw, gemm_config_output=gc_o, gemm_config_grad_input=gc_gi, gemm_config_grad_weight=gc_gw, ) ``` # performance Below we provide basic performance characteristics of axiswise scaling in general, and the all-axiswise and lw recipes. ## gemm performance of torch._scaled_mm baseline: tensorwise scaling ``` > python benchmarks/float8/bench_matmul.py --shape_gen_name square --use_gpu_kernel_time True fast_accum name M K N ref_time_s fp8_time_s fp8_speedup 0 True 0 256 256 256 0.000004 0.000006 0.573115 1 True 1 512 512 512 0.000005 0.000007 0.659333 2 True 2 1024 1024 1024 0.000011 0.000010 1.080664 3 True 3 2048 2048 2048 0.000028 0.000017 1.596239 4 True 4 4096 4096 4096 0.000210 0.000082 2.551705 5 True 5 8192 8192 8192 0.001671 0.000680 2.457972 6 True 6 16384 16384 16384 0.015030 0.006498 2.313032 7 True 7 32768 32768 32768 0.103236 0.048097 2.146411 8 False 0 256 256 256 0.000004 0.000006 0.630061 9 False 1 512 512 512 0.000005 0.000007 0.767236 10 False 2 1024 1024 1024 0.000012 0.000008 1.391347 11 False 3 2048 2048 2048 0.000029 0.000020 1.457922 12 False 4 4096 4096 4096 0.000211 0.000101 2.100081 13 False 5 8192 8192 8192 0.001676 0.000788 2.128628 14 False 6 16384 16384 16384 0.014933 0.006351 2.351209 15 False 7 32768 32768 32768 0.103457 0.049498 2.090134 ``` experiment: axiswise-scaling ``` > python benchmarks/float8/bench_matmul.py --shape_gen_name square --use_gpu_kernel_time True --scaling_granularity axiswise fast_accum name M K N ref_time_s fp8_time_s fp8_speedup 0 True 0 256 256 256 0.000004 0.000004 0.966772 1 True 1 512 512 512 0.000005 0.000004 1.095791 2 True 2 1024 1024 1024 0.000011 0.000006 1.988363 3 True 3 2048 2048 2048 0.000027 0.000015 1.890065 4 True 4 4096 4096 4096 0.000210 0.000082 2.552356 5 True 5 8192 8192 8192 0.001674 0.001092 1.533132 6 True 6 16384 16384 16384 0.015114 0.008785 1.720480 7 True 7 32768 32768 32768 0.103286 0.071456 1.445439 8 False 0 256 256 256 0.000004 0.000004 0.899054 9 False 1 512 512 512 0.000005 0.000005 1.005340 10 False 2 1024 1024 1024 0.000011 0.000006 1.692868 11 False 3 2048 2048 2048 0.000028 0.000049 0.567655 12 False 4 4096 4096 4096 0.000210 0.000341 0.616193 13 False 5 8192 8192 8192 0.001678 0.002640 0.635541 14 False 6 16384 16384 16384 0.015051 0.021557 0.698212 15 False 7 32768 32768 32768 0.103497 0.169797 0.609533 ``` ## performance on microbenchmark of ln -> linear -> sigmoid Note: for large square shapes, performance tends to be fp8_delayed_tensorwise > fp8_dynamic_tensorwise > fp8_dynamic_axiswise > custom_recipe. For performance of fp8_dynamic_axiswise, it seems that the gap from tensorwise is mostly due to the gemm performance being behind tensorwise. ``` > python benchmarks/float8/float8_roofline.py ~/local/tmp/20241004_roofline.csv fwd_M fwd_K fwd_N bf16_gemm_s fp8_gemm_s fp8_axs_gemm_time_s fp8_oh_dyn_limit ... fp8_del_s fp8_dyn_axs_s fp8_lw_s fp8_dyn_sp fp8_del_sp fp8_dyn_axs_sp fp8_lw_sp 0 256 256 256 0.000011 0.000018 0.000012 6.50457971014493e-6 ... 0.000043 0.000049 0.000030 0.465634 0.457907 0.398357 0.643088 1 512 512 512 0.000014 0.000020 0.000013 8.01831884057971e-6 ... 0.000047 0.000054 0.000034 0.489556 0.493467 0.432643 0.685842 2 1024 1024 1024 0.000033 0.000026 0.000017 1.40732753623188e-5 ... 0.000060 0.000063 0.000050 0.734123 0.741467 0.705941 0.891199 3 2048 2048 2048 0.000081 0.000055 0.000044 3.82931014492754e-5 ... 0.000147 0.000159 0.000142 0.815678 0.800811 0.739865 0.827441 4 4096 4096 4096 0.000632 0.000274 0.000247 0.000135172405797101 ... 0.000602 0.000622 0.000662 1.236320 1.261848 1.221755 1.147678 5 8192 8192 8192 0.005027 0.002216 0.003292 0.000522689623188406 ... 0.003665 0.004776 0.005720 1.432213 1.513035 1.161130 0.969448 6 16384 16384 16384 0.045113 0.018975 0.025706 0.00207275849275362 ... 0.024664 0.032254 0.038051 1.803456 1.883291 1.440118 1.220738 7 32768 32768 32768 0.312459 0.147255 0.214492 0.00827303397101449 ... 0.182645 0.240962 0.270973 1.696376 1.766307 1.338827 1.190552 ``` ## performance on torchtitan LLaMa 3 8B on 8 H100 GPUs, float8 compute only: * baseline (bf16 + compile): 6,294 wps * f8 all-tensorwise: 7,359 wps (1.17x vs baseline) * f8 all-axiswise: 7,135 wps (1.13x vs baseline - surprising that this is close to all-tensorwise) * LW_AXISWISE_WITH_GW_HP: 6,506 wps (1.03x vs baseline) so, looks like we have performance work to do with `LW_AXISWISE_WITH_GW_HP` in future PRs # accuracy I did a very quick check that loss curves on torchtitan LLaMa 3 8B pretraining with 8 H100 GPUs look good for bf16/f8_tensorwise/f8_axiswise/f8_lw on 0.5k iterations. I will leave longer accuracy verifications for future work. <img width="973" alt="Screenshot 2024-10-04 at 10 05 24 PM" src="https://github.com/user-attachments/assets/0d682183-41ef-4f04-992f-cd0d0fc8a65c"> Test Plan: Reviewers: Subscribers: Tasks: Tags:
jainapurva
pushed a commit
that referenced
this pull request
Oct 15, 2024
…guration (#940) Summary: This PR finalizes the UX for axiswise scaling for float8 training, and introduces per-gemm-argument configurability to Float8Linear to enable exploration of future recipes. Not all combinations are supported yet. Specifically, the additional combination we now support and test is a recipe from @lw , where we do the following: ``` output_hp = input_fp8_axiswise_dim0 @ weight_t_axiswise_dim1 grad_input_hp = grad_output_fp8_axiswise_dim0 @ weight_fp8_tensorwise grad_weight_hp = input_t_hp @ grad_output_hp ``` Key characteristics of this recipe: 1. increased accuracy for `grad_weight`, which is important for real workloads 2. `output` and `weight` now only need to be scaled axiswise across a single dim compared to vanilla all-axiswise, which is more amenable to fast kernels Here is how a user can configure this: ```python # # short form # config = torchao.float8.config.recipe_name_to_linear_config(Float8LinearRecipeName.LW_AXISWISE_WITH_GW_HP) # # or, long form # # output_hp = input_fp8_axiswise_dim0 @ weight_t_axiswise_dim1 cc_i = CastConfig(scaling_granularity=ScalingGranularity.AXISWISE) cc_w = CastConfig(scaling_granularity=ScalingGranularity.AXISWISE) # grad_input_hp = grad_output_fp8_axiswise_dim0 @ weight_fp8_tensorwise cc_go = CastConfig(scaling_granularity=ScalingGranularity.AXISWISE) cc_w_go = CastConfig(scaling_granularity=ScalingGranularity.TENSORWISE) # grad_weight_hp = input_t_hp @ grad_output_hp cc_i_gw = CastConfig(scaling_type=ScalingType.DISABLED) cc_go_gw = CastConfig(scaling_type=ScalingType.DISABLED) # ensure fast_accum is on to get fast kernels gc_o = Float8GemmConfig(use_fast_accum=True) gc_gi = Float8GemmConfig(use_fast_accum=True) gc_gw = Float8GemmConfig(use_fast_accum=True) config = Float8Config( cast_config_input = cc_i, cast_config_weight = cc_w, cast_config_grad_output = cc_go, cast_config_input_for_grad_weight = cc_i_gw, cast_config_weight_for_grad_output = cc_w_go, cast_config_grad_output_for_grad_weight = cc_go_gw, gemm_config_output=gc_o, gemm_config_grad_input=gc_gi, gemm_config_grad_weight=gc_gw, ) ``` # performance Below we provide basic performance characteristics of axiswise scaling in general, and the all-axiswise and lw recipes. ## gemm performance of torch._scaled_mm baseline: tensorwise scaling ``` > python benchmarks/float8/bench_matmul.py --shape_gen_name square --use_gpu_kernel_time True fast_accum name M K N ref_time_s fp8_time_s fp8_speedup 0 True 0 256 256 256 0.000004 0.000006 0.573115 1 True 1 512 512 512 0.000005 0.000007 0.659333 2 True 2 1024 1024 1024 0.000011 0.000010 1.080664 3 True 3 2048 2048 2048 0.000028 0.000017 1.596239 4 True 4 4096 4096 4096 0.000210 0.000082 2.551705 5 True 5 8192 8192 8192 0.001671 0.000680 2.457972 6 True 6 16384 16384 16384 0.015030 0.006498 2.313032 7 True 7 32768 32768 32768 0.103236 0.048097 2.146411 8 False 0 256 256 256 0.000004 0.000006 0.630061 9 False 1 512 512 512 0.000005 0.000007 0.767236 10 False 2 1024 1024 1024 0.000012 0.000008 1.391347 11 False 3 2048 2048 2048 0.000029 0.000020 1.457922 12 False 4 4096 4096 4096 0.000211 0.000101 2.100081 13 False 5 8192 8192 8192 0.001676 0.000788 2.128628 14 False 6 16384 16384 16384 0.014933 0.006351 2.351209 15 False 7 32768 32768 32768 0.103457 0.049498 2.090134 ``` experiment: axiswise-scaling ``` > python benchmarks/float8/bench_matmul.py --shape_gen_name square --use_gpu_kernel_time True --scaling_granularity axiswise fast_accum name M K N ref_time_s fp8_time_s fp8_speedup 0 True 0 256 256 256 0.000004 0.000004 0.966772 1 True 1 512 512 512 0.000005 0.000004 1.095791 2 True 2 1024 1024 1024 0.000011 0.000006 1.988363 3 True 3 2048 2048 2048 0.000027 0.000015 1.890065 4 True 4 4096 4096 4096 0.000210 0.000082 2.552356 5 True 5 8192 8192 8192 0.001674 0.001092 1.533132 6 True 6 16384 16384 16384 0.015114 0.008785 1.720480 7 True 7 32768 32768 32768 0.103286 0.071456 1.445439 8 False 0 256 256 256 0.000004 0.000004 0.899054 9 False 1 512 512 512 0.000005 0.000005 1.005340 10 False 2 1024 1024 1024 0.000011 0.000006 1.692868 11 False 3 2048 2048 2048 0.000028 0.000049 0.567655 12 False 4 4096 4096 4096 0.000210 0.000341 0.616193 13 False 5 8192 8192 8192 0.001678 0.002640 0.635541 14 False 6 16384 16384 16384 0.015051 0.021557 0.698212 15 False 7 32768 32768 32768 0.103497 0.169797 0.609533 ``` ## performance on microbenchmark of ln -> linear -> sigmoid Note: for large square shapes, performance tends to be fp8_delayed_tensorwise > fp8_dynamic_tensorwise > fp8_dynamic_axiswise > custom_recipe. For performance of fp8_dynamic_axiswise, it seems that the gap from tensorwise is mostly due to the gemm performance being behind tensorwise. ``` > python benchmarks/float8/float8_roofline.py ~/local/tmp/20241004_roofline.csv fwd_M fwd_K fwd_N bf16_gemm_s fp8_gemm_s fp8_axs_gemm_time_s fp8_oh_dyn_limit ... fp8_del_s fp8_dyn_axs_s fp8_lw_s fp8_dyn_sp fp8_del_sp fp8_dyn_axs_sp fp8_lw_sp 0 256 256 256 0.000011 0.000018 0.000012 6.50457971014493e-6 ... 0.000043 0.000049 0.000030 0.465634 0.457907 0.398357 0.643088 1 512 512 512 0.000014 0.000020 0.000013 8.01831884057971e-6 ... 0.000047 0.000054 0.000034 0.489556 0.493467 0.432643 0.685842 2 1024 1024 1024 0.000033 0.000026 0.000017 1.40732753623188e-5 ... 0.000060 0.000063 0.000050 0.734123 0.741467 0.705941 0.891199 3 2048 2048 2048 0.000081 0.000055 0.000044 3.82931014492754e-5 ... 0.000147 0.000159 0.000142 0.815678 0.800811 0.739865 0.827441 4 4096 4096 4096 0.000632 0.000274 0.000247 0.000135172405797101 ... 0.000602 0.000622 0.000662 1.236320 1.261848 1.221755 1.147678 5 8192 8192 8192 0.005027 0.002216 0.003292 0.000522689623188406 ... 0.003665 0.004776 0.005720 1.432213 1.513035 1.161130 0.969448 6 16384 16384 16384 0.045113 0.018975 0.025706 0.00207275849275362 ... 0.024664 0.032254 0.038051 1.803456 1.883291 1.440118 1.220738 7 32768 32768 32768 0.312459 0.147255 0.214492 0.00827303397101449 ... 0.182645 0.240962 0.270973 1.696376 1.766307 1.338827 1.190552 ``` ## performance on torchtitan LLaMa 3 8B on 8 H100 GPUs, float8 compute only: * baseline (bf16 + compile): 6,294 wps * f8 all-tensorwise: 7,359 wps (1.17x vs baseline) * f8 all-axiswise: 7,135 wps (1.13x vs baseline - surprising that this is close to all-tensorwise) * LW_AXISWISE_WITH_GW_HP: 6,506 wps (1.03x vs baseline) so, looks like we have performance work to do with `LW_AXISWISE_WITH_GW_HP` in future PRs # accuracy I did a very quick check that loss curves on torchtitan LLaMa 3 8B pretraining with 8 H100 GPUs look good for bf16/f8_tensorwise/f8_axiswise/f8_lw on 0.5k iterations. I will leave longer accuracy verifications for future work. <img width="973" alt="Screenshot 2024-10-04 at 10 05 24 PM" src="https://github.com/user-attachments/assets/0d682183-41ef-4f04-992f-cd0d0fc8a65c"> Test Plan: Reviewers: Subscribers: Tasks: Tags:
yanbing-j
pushed a commit
to yanbing-j/ao
that referenced
this pull request
Dec 9, 2024
* Update Android instrucitons on README.md Specify the steps to create `android/Torchchat/app/libs/`, and to rename the AAR file. * Update README.md * Update README.md for moving file * Update Android SDK instructions * Update README.md * Add adb requirement * Update README.md * Fix formatting
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Labels
CLA Signed
This label is managed by the Facebook bot. Authors need to sign the CLA before a PR can be reviewed.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Summary:
This PR finalizes the UX for axiswise scaling for float8 training, and introduces per-gemm-argument configurability to Float8Linear to enable exploration of future recipes. Not all combinations are supported yet. Specifically, the additional combination we now support and test is a recipe from @lw , where we do the following:
Key characteristics of this recipe:
grad_weight
, which is important for real workloadsoutput
andweight
now only need to be scaled axiswise across a single dim compared to vanilla all-axiswise, which is more amenable to fast kernelsHere is how a user can configure this:
performance
Below we provide basic performance characteristics of axiswise scaling in general, and the all-axiswise and lw recipes.
gemm performance of torch._scaled_mm
baseline: tensorwise scaling
experiment: axiswise-scaling
performance on microbenchmark of ln -> linear -> sigmoid
Note: for large square shapes, performance tends to be fp8_delayed_tensorwise > fp8_dynamic_tensorwise > fp8_dynamic_axiswise > custom_recipe. For performance of fp8_dynamic_axiswise, it seems that the gap from tensorwise is mostly due to the gemm performance being behind tensorwise.
performance on torchtitan LLaMa 3 8B on 8 H100 GPUs, float8 compute only:
so, looks like we have performance work to do with
LW_AXISWISE_WITH_GW_HP
in future PRsaccuracy
I did a very quick check that loss curves on torchtitan LLaMa 3 8B pretraining with 8 H100 GPUs look good for bf16/f8_tensorwise/f8_axiswise/f8_lw on 0.5k iterations. I will leave longer accuracy verifications for future work.
Test Plan:
Reviewers:
Subscribers:
Tasks:
Tags: