Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

python extra tasks+hive assignment #13

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
42 changes: 42 additions & 0 deletions assignment1.html

Large diffs are not rendered by default.

42 changes: 42 additions & 0 deletions assignment1p2.html

Large diffs are not rendered by default.

42 changes: 42 additions & 0 deletions assignment2 (1).html

Large diffs are not rendered by default.

110 changes: 110 additions & 0 deletions no_of_words.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,110 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"count of alphabets\n",
"[3771, 3375, 2689, 2637, 2553, 2524, 2220, 2058, 1578, 1494, 1489, 1112, 926, 914, 839, 676, 602, 555, 468, 446, 378, 281, 150, 30, 21, 18]\n",
"top 5 alphabets with maximum\n",
"[3771, 3375, 2689, 2637, 2553]\n",
"graph of all alphabets and their count\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAWfklEQVR4nO3df5BdZX3H8feHEAHBmgQWDEnqok2roGPQJcSiMwgYAuoEpmChFQLFidRk1FZsgz8GBDPF+oPBjlCDpARFQ4oiKUQhBhRRgWxCCAmBspJI1mTISgLyo0YTvv3jPBkv4f44d/fu3U2ez2vmzj3nOc855zl3z37uueenIgIzM8vDPkPdADMzax+HvplZRhz6ZmYZceibmWXEoW9mlpF9h7oB9RxyyCHR2dk51M0wM9ujrFix4rcR0VFt2LAO/c7OTrq7u4e6GWZmexRJv641zLt3zMwy4tA3M8uIQ9/MLCMOfTOzjDj0zcwy4tA3M8uIQ9/MLCMOfTOzjDj0zcwyMqyvyB2ozjm3N6yz4Yr3taElZmbDg7f0zcwy4tA3M8uIQ9/MLCMOfTOzjDj0zcwy4tA3M8uIQ9/MLCMOfTOzjDj0zcwy4tA3M8tIw9CXtL+kByQ9JGmtpM+n8uslrZe0Kr0mpXJJ+pqkHkmrJb29YlozJD2eXjMGb7HMzKyaMvfe2Q6cEBHPSxoJ3Cvph2nYpyLi5t3qnwJMTK9jgWuAYyWNAS4BuoAAVkhaHBHbWrEgZmbWWMMt/Sg8n3pHplfUGWU6cEMa7z5glKSxwMnA0ojYmoJ+KTBtYM03M7NmlNqnL2mEpFXAForgvj8Nmpt24Vwpab9UNg7YWDF6byqrVW5mZm1SKvQjYmdETALGA5MlvQW4GHgTcAwwBvjXVF3VJlGn/GUkzZTULam7r6+vTPPMzKykps7eiYhngJ8A0yJic9qFsx34L2ByqtYLTKgYbTywqU757vOYFxFdEdHV0dHRTPPMzKyBMmfvdEgalboPAE4CHk376ZEk4DRgTRplMXBuOotnCvBsRGwG7gCmShotaTQwNZWZmVmblDl7ZyywQNIIii+JRRFxm6S7JHVQ7LZZBVyY6i8BTgV6gBeB8wEiYquky4Hlqd5lEbG1dYtiZmaNNAz9iFgNHF2l/IQa9QOYVWPYfGB+k200M7MW8RW5ZmYZ2asfjN6MMg9RBz9I3cz2bN7SNzPLiEPfzCwjDn0zs4w49M3MMuLQNzPLiEPfzCwjDn0zs4w49M3MMuLQNzPLiEPfzCwjDn0zs4w49M3MMuLQNzPLiEPfzCwjDn0zs4w49M3MMuLQNzPLSMPQl7S/pAckPSRpraTPp/IjJN0v6XFJN0l6VSrfL/X3pOGdFdO6OJU/JunkwVooMzOrrsyW/nbghIh4GzAJmCZpCvBF4MqImAhsAy5I9S8AtkXEXwBXpnpIOhI4CzgKmAZcLWlEKxfGzMzqaxj6UXg+9Y5MrwBOAG5O5QuA01L39NRPGn6iJKXyhRGxPSLWAz3A5JYshZmZlVJqn76kEZJWAVuApcCvgGciYkeq0guMS93jgI0AafizwMGV5VXGqZzXTEndkrr7+vqaXyIzM6upVOhHxM6ImASMp9g6f3O1auldNYbVKt99XvMioisiujo6Oso0z8zMSmrq7J2IeAb4CTAFGCVp3zRoPLApdfcCEwDS8NcCWyvLq4xjZmZtUObsnQ5Jo1L3AcBJwDrgbuCMVG0GcGvqXpz6ScPviohI5Wels3uOACYCD7RqQczMrLF9G1dhLLAgnWmzD7AoIm6T9AiwUNIXgAeB61L964BvSeqh2MI/CyAi1kpaBDwC7ABmRcTO1i6OmZnV0zD0I2I1cHSV8ieocvZNRPweOLPGtOYCc5tvppmZtYKvyDUzy4hD38wsIw59M7OMOPTNzDLi0Dczy4hD38wsIw59M7OMOPTNzDLi0Dczy4hD38wsIw59M7OMlLnhmlXROef2UvU2XPG+QW6JmVl53tI3M8uIQ9/MLCPevdMmZXYHeVeQmQ02b+mbmWXEoW9mlhGHvplZRso8GH2CpLslrZO0VtLHU/mlkn4jaVV6nVoxzsWSeiQ9JunkivJpqaxH0pzBWSQzM6ulzIHcHcAnI2KlpNcAKyQtTcOujIgvV1aWdCTFw9CPAg4HfizpL9PgrwPvBXqB5ZIWR8QjrViQvY0P/JrZYCjzYPTNwObU/ZykdcC4OqNMBxZGxHZgvaQe/vQA9Z70QHUkLUx1Hfot4C8JMyujqX36kjqBo4H7U9FsSaslzZc0OpWNAzZWjNabymqVm5lZm5QOfUkHAd8DPhERvwOuAd4ITKL4JfCVXVWrjB51ynefz0xJ3ZK6+/r6yjbPzMxKKBX6kkZSBP6NEfF9gIh4KiJ2RsRLwLX8aRdOLzChYvTxwKY65S8TEfMioisiujo6OppdHjMzq6PM2TsCrgPWRcRXK8rHVlQ7HViTuhcDZ0naT9IRwETgAWA5MFHSEZJeRXGwd3FrFsPMzMooc/bOccA5wMOSVqWyTwNnS5pEsYtmA/ARgIhYK2kRxQHaHcCsiNgJIGk2cAcwApgfEWtbuCxmZtZAmbN37qX6/vgldcaZC8ytUr6k3nhmZja4fEWumVlGHPpmZhlx6JuZZcShb2aWEYe+mVlGHPpmZhlx6JuZZcShb2aWEYe+mVlGHPpmZhkpc+8d28uUeeAK+KErZnsjb+mbmWXEoW9mlhGHvplZRhz6ZmYZceibmWXEoW9mlhGHvplZRhz6ZmYZaXhxlqQJwA3A64CXgHkRcZWkMcBNQCfFg9E/GBHbJAm4CjgVeBE4LyJWpmnNAD6bJv2FiFjQ2sWxweCLucz2HmW29HcAn4yINwNTgFmSjgTmAMsiYiKwLPUDnAJMTK+ZwDUA6UviEuBYYDJwiaTRLVwWMzNroGHoR8TmXVvqEfEcsA4YB0wHdm2pLwBOS93TgRuicB8wStJY4GRgaURsjYhtwFJgWkuXxszM6mpqn76kTuBo4H7gsIjYDMUXA3BoqjYO2FgxWm8qq1W++zxmSuqW1N3X19dM88zMrIHSoS/pIOB7wCci4nf1qlYpizrlLy+ImBcRXRHR1dHRUbZ5ZmZWQqnQlzSSIvBvjIjvp+Kn0m4b0vuWVN4LTKgYfTywqU65mZm1ScPQT2fjXAesi4ivVgxaDMxI3TOAWyvKz1VhCvBs2v1zBzBV0uh0AHdqKjMzszYpcz/944BzgIclrUplnwauABZJugB4EjgzDVtCcbpmD8Upm+cDRMRWSZcDy1O9yyJia0uWwszMSmkY+hFxL9X3xwOcWKV+ALNqTGs+ML+ZBpqZWev4ilwzs4w49M3MMuLQNzPLiEPfzCwjDn0zs4w49M3MMuLQNzPLiEPfzCwjDn0zs4w49M3MMuLQNzPLiEPfzCwjDn0zs4w49M3MMuLQNzPLiEPfzCwjDn0zs4yUeVyiWVM659zesM6GK97XhpaY2e7KPBh9vqQtktZUlF0q6TeSVqXXqRXDLpbUI+kxSSdXlE9LZT2S5rR+UczMrJEyu3euB6ZVKb8yIial1xIASUcCZwFHpXGuljRC0gjg68ApwJHA2amumZm1UZkHo98jqbPk9KYDCyNiO7BeUg8wOQ3riYgnACQtTHUfabrFZmbWbwM5kDtb0uq0+2d0KhsHbKyo05vKapW/gqSZkroldff19Q2geWZmtrv+Hsi9BrgciPT+FeAfAFWpG1T/colqE46IecA8gK6urqp1bO/S7IFfHyg2679+hX5EPLWrW9K1wG2ptxeYUFF1PLApddcqNzOzNunX7h1JYyt6Twd2ndmzGDhL0n6SjgAmAg8Ay4GJko6Q9CqKg72L+99sMzPrj4Zb+pK+CxwPHCKpF7gEOF7SJIpdNBuAjwBExFpJiygO0O4AZkXEzjSd2cAdwAhgfkSsbfnSmJlZXWXO3jm7SvF1derPBeZWKV8CLGmqdWZm1lK+DYOZWUYc+mZmGXHom5llxKFvZpYRh76ZWUYc+mZmGXHom5llxKFvZpYRh76ZWUYc+mZmGXHom5llxKFvZpYRh76ZWUYc+mZmGXHom5llxKFvZpaR/j4Y3WyPUOYh6uAHqVs+vKVvZpYRh76ZWUYahr6k+ZK2SFpTUTZG0lJJj6f30alckr4mqUfSaklvrxhnRqr/uKQZg7M4ZmZWT5kt/euBabuVzQGWRcREYFnqBzgFmJheM4FroPiSAC4BjgUmA5fs+qIwM7P2aRj6EXEPsHW34unAgtS9ADitovyGKNwHjJI0FjgZWBoRWyNiG7CUV36RmJnZIOvvPv3DImIzQHo/NJWPAzZW1OtNZbXKX0HSTEndkrr7+vr62TwzM6um1QdyVaUs6pS/sjBiXkR0RURXR0dHSxtnZpa7/ob+U2m3Del9SyrvBSZU1BsPbKpTbmZmbdTf0F8M7DoDZwZwa0X5ueksninAs2n3zx3AVEmj0wHcqanMzMzaqOEVuZK+CxwPHCKpl+IsnCuARZIuAJ4EzkzVlwCnAj3Ai8D5ABGxVdLlwPJU77KI2P3gsNmQ8xW8trdrGPoRcXaNQSdWqRvArBrTmQ/Mb6p1ZsNcmS8Jf0HYcOIrcs3MMuLQNzPLiEPfzCwjvrWyWRv5GIANNW/pm5llxKFvZpYRh76ZWUYc+mZmGXHom5llxKFvZpYRh76ZWUYc+mZmGfHFWWbDmC/mslbzlr6ZWUYc+mZmGXHom5llxPv0zfYSfuqXleEtfTOzjAxoS1/SBuA5YCewIyK6JI0BbgI6gQ3AByNimyQBV1E8Q/dF4LyIWDmQ+ZtZ//mXQZ5asaX/noiYFBFdqX8OsCwiJgLLUj/AKcDE9JoJXNOCeZuZWRMGY/fOdGBB6l4AnFZRfkMU7gNGSRo7CPM3M7MaBhr6AdwpaYWkmanssIjYDJDeD03l44CNFeP2prKXkTRTUrek7r6+vgE2z8zMKg307J3jImKTpEOBpZIerVNXVcriFQUR84B5AF1dXa8YbmZm/Teg0I+ITel9i6RbgMnAU5LGRsTmtPtmS6reC0yoGH08sGkg8zez9vEtIfYO/Q59SQcC+0TEc6l7KnAZsBiYAVyR3m9NoywGZktaCBwLPLtrN5CZ7X38JTE8DWRL/zDgluJMTPYFvhMRP5K0HFgk6QLgSeDMVH8JxemaPRSnbJ4/gHmbmVk/9Dv0I+IJ4G1Vyp8GTqxSHsCs/s7PzMwGzlfkmpllxPfeMbNhwccA2sNb+mZmGXHom5llxKFvZpYRh76ZWUZ8INfM9ji+LXT/eUvfzCwjDn0zs4w49M3MMuLQNzPLiEPfzCwjDn0zs4w49M3MMuLz9M1sr+fz+v/EW/pmZhlx6JuZZcShb2aWEYe+mVlG2h76kqZJekxSj6Q57Z6/mVnO2nr2jqQRwNeB9wK9wHJJiyPikXa2w8ysnr350Y3tPmVzMtATEU8ASFoITAcc+ma2x2r2S2Iov1QUEYMy4aozk84ApkXEh1P/OcCxETG7os5MYGbq/SvgsRY24RDgt5nUH05tGez6w6ktg11/OLVlsOsPp7YMdv1mp93I6yOio+qQiGjbCzgT+GZF/znAf7Rx/t251B9ObfGyelm9rK2d9kBe7T6Q2wtMqOgfD2xqcxvMzLLV7tBfDkyUdISkVwFnAYvb3AYzs2y19UBuROyQNBu4AxgBzI+ItW1swryM6g+ntgx2/eHUlsGuP5zaMtj1h1NbBrt+s9Put7YeyDUzs6HlK3LNzDLi0Dczy4hDvwpJnZLWtGlel0q6aBCm+zFJ6yTd2OLpNv3ZSPpFP+bTcJz+/p0kPd/sODYwkkZJ+uhQt8Mc+nuzjwKnRsTfD3VDIuKv2zGOtY4KrcyHURTrpA2xbEJf0g8krZC0Nl3128i+khZIWi3pZkmvbjD9c1PdhyR9q0Hdz6Sbzv2Y4qrjRm3/kKQHJK2S9I10D6N69f8TeAOwWNI/Naj7OUmPSloq6bslf3WMkHRt+izvlHRAg3k0vWXd7DiS3iDpQUnHNDuvKtPqTJ/JNyWtkXSjpJMk/VzS45Im1xhnXZOfyz+n6a+R9ImSbSq1TlauY2X/rhXLcDWwkpdfU7N73QMl3Z7W9zWS/rbB5K8A3pjW4S+VaMeaiv6LJF1ao+4XK39BpF/On6xR918kfSx1XynprtR9oqRv1xjnmPR575+Wea2kt9Rp++WSPl7RP3fXPGvUvzB9JqskrZd0d626LdOuq8CG+gWMSe8HAGuAg+vU7QQCOC71zwcuqlP/KIrbRRxSOa8add8BPAy8GvgzoKfBtN8M/A8wMvVfDZxbYnk37GpPnTpdwKr0mbwGeLxeWyo+mx3ApNS/CPhQg3Ge78ffq+E4qS1rKL44H9zVpoFOu2IZ30qxYbQirQOiuFfUDwb6uVSsBwcCBwFrgaNbsU42u47tNo+XgCkl6v4NcG1F/2vL/K1K/n1eVhe4CLi0Rt2jgZ9W9D8C/HmNulOA/07dPwMeAEYClwAfqdOeLwBfprhZ5MUl2r4yde8D/Io6WVMx3sjUpg+U/R/p7yubLX3gY5IeAu6j2IKZ2KD+xoj4eer+NvCuOnVPAG6OiN8CRMTWOnXfDdwSES9GxO9ofHHaiRT/xMslrUr9b2gwTlnvAm6NiP+LiOcovlzKWB8Rq1L3CooVfah0ALdSBOyqRpWbsD4iHo6IlygCeVkU/50PU3t5m/lc3kWxHrwQEc8D36dYN+opu042u45V+nVE3Fei3sPASWlL+90R8WwT82iZiHgQOFTS4ZLeBmyLiCdrVF8BvEPSa4DtwC8pNnzeTRG4tVxGcWfgLuDfG7RnA/C0pKOBqcCDEfF0iUW5CrgrIsr+D/ZbFg9Gl3Q8cBLwzoh4UdJPgP0bjLb7BQz1LmhQg+GNpl2PgAURcXET4zQz7f7YXtG9k+KXwlB5FtgIHEcRzq1SuYwvVfS/RO3/m2Y+l/589s2sk/29AOeFUg2J+F9J7wBOBf5N0p0RcVk/57m7Hbx813Oj/9WbgTOA1wELa1WKiD9K2gCcD/wCWA28B3gjsK7O9MdQ/BobmdrS6DP6JnBeas/8BnWRdB7wemB2g6otkcuW/msptgBelPQmip95jfy5pHem7rOBe+vUXQZ8UNLBAJLG1Kl7D3C6pAPSFscHGrRjGXCGpEN3TVvS60u0v4x7gQ+k/ZUHAXviDcL/AJwGnCvp74a6MU24BzhN0qslHQicTv2tTSi/Tja7jjVN0uHAixHxbYpdH29vMMpzFLsQy3iKYuv9YEn7Ae9vUH8hxS1dzqD4AqjnHordRfdQfN4XAqvSr7ha5gGfA24Evti4+dwCTAOOobj7QE3pi/Miil+qL5WY9oBlsaUP/Ai4UNJqin3vZX6+rgNmSPoGxb7ua2pVjIi1kuYCP5W0k2L/8nk16q6UdBPFvvRf0+AfPSIekfRZ4E4VZ1P8EZiVxh2QiFguaTHwUJpeN8WW83BQeks1Il6Q9H5gqaQXIuLWQWxXS6T14HqK/cpQ3H32wQajlVonm13H+umtwJckvUSxTv5jvcoR8XQ6EL4G+GFEfKpO3T9Kugy4H1gPPNpg2mvTl9tvImJzg3b/DPgM8Mu03vyeOp+PpHOBHRHxHRUnUPxC0gkRcVed9vwhHZB9JiJ2NmjPbIpfEndLguJumx9uMM6A+DYMmZN0UEQ8n84EuQeYGRErh7hNB1McDGvVL5o9nqRO4LaIqHnmSJ1xL6U4eP3lFjfLqkgbZyuBMyPi8aFuz+5y2b1jtc1LB4hXAt8bBoF/OMUBNgeU7XEkHUlxttSy4Rj44C19M7OseEvfzCwjDn0zs4w49M3MMuLQNzPLiEPfzCwj/w+yhxAIuoS09gAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import requests\n",
"import webbrowser\n",
"from bs4 import BeautifulSoup\n",
"import re\n",
"from matplotlib import pyplot as plt\n",
"url=\"https://www.cricbuzz.com/\"\n",
"\n",
"page=requests.get(url)\n",
"page=page.text\n",
"\n",
"content=BeautifulSoup(page,\"html.parser\")\n",
"#print(content.text)\n",
"ll=[]\n",
"l2=[\"?\",\"\\xa0•\\xa0\\xa0GMT\",\"►\",\"✖ \",\"suggest.tag\",\"SEARCH .cb-srch-ico{margin: 0} \",\"{{}} \",\"\"\"CBQueue.push(function(){ if((_GEO.country == \"US\" || _GEO.country == \"CA\") && false){ _ele('#video_playlist').html('<div class=\"cb-bg-white\" style=\"margin:0 5px 10px;\"><div class=\"kaltura-playlist\" uiconf_id=\"33885652\" entry_id=\"0_lvphia47\" uiautoplay=\"false\" style=\"width:420px;height:385px;padding:10px 15px;\"></div></div>'); }else if([\"AE\",\"SA\",\"KW\",\"BH\",\"QA\",\"OM\",\"GB\"].indexOf(_GEO.country) != -1 && false){ var eplr = document.createElement('script'); eplr.type = 'text/javascript'; eplr.async = true; eplr.src = 'https://player.performgroup.com/eplayer.js#ccb175de91b4f3c5c4bbed6a35.qjdsydmry69m1je82zk8il975'; var vpl = document.getElementById('video_playlist'); vpl.className = \"cb-bg-white\"; vpl.style.margin = \"0px 5px 10px\"; vpl.appendChild(eplr); } }); CBQueue.push(function(){\tif(_GEO.country == \"US\" || _GEO.country == \"CA\"){\t_ele('#kaltura-video-player').removeClass('disp-none');\t}\tif(_GEO.country == \"IN\" ){\t_ele('specials-home-module').removeClass('disp-none');\t}\"\"\",\n",
" \"\"\" CBQueue.push(function(){ if((_GEO.country == \"US\" || _GEO.country == \"CA\") && false){ _ele('#video_playlist').html('<div class=\"cb-bg-white\" style=\"margin:0 5px 10px;\"><div class=\"kaltura-playlist\" uiconf_id=\"33885652\" entry_id=\"0_lvphia47\" uiautoplay=\"false\" style=\"width:420px;height:385px;padding:10px 15px;\"></div></div>'); }else if([\"AE\",\"SA\",\"KW\",\"BH\",\"QA\",\"OM\",\"GB\"].indexOf(_GEO.country) != -1 && false){ var eplr = document.createElement('script'); eplr.type = 'text/javascript'; eplr.async = true; eplr.src = 'https://player.performgroup.com/eplayer.js#ccb175de91b4f3c5c4bbed6a35.qjdsydmry69m1je82zk8il975'; var vpl = document.getElementById('video_playlist'); vpl.className = \"cb-bg-white\"; vpl.style.margin = \"0px 5px 10px\"; vpl.appendChild(eplr); } });\"\"\"]\n",
"content2=content.find_all(\"div\")\n",
"for i in content2:\n",
" ll.append(i.text)\n",
" \n",
"#print(len(ll))\n",
"\n",
"def list_to_str(s):\n",
" str = \"\"\n",
" for ele in s:\n",
" str=str+ele\n",
" return str\n",
"\n",
"raw_material=list_to_str(ll)\n",
"#print(raw_material) \n",
"for i in l2:\n",
" raw_material=raw_material.replace(i,\"\")\n",
"#print(raw_material)\n",
"total_len=[]\n",
"list_of_alphabets=[]\n",
"for i in range(97,123):\n",
" list_of_alphabets.append(chr(i))\n",
" x = re.findall(f\"{chr(i)}\", raw_material)\n",
" total_len.append(len(x))\n",
"\n",
"#print(total_len)\n",
"\n",
"total_len.sort(reverse=True)\n",
"print(\"count of alphabets\")\n",
"print(total_len)\n",
"max_list=[]\n",
"for i in range(0,5):\n",
" max_list.append(total_len[i])\n",
"print(\"top 5 alphabets with maximum count\")\n",
"print(max_list)\n",
"print(\"graph of all alphabets and their count\")\n",
"\n",
"plt.bar(list_of_alphabets,total_len)\n",
"plt.show()\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
95 changes: 95 additions & 0 deletions sentimental_analysis.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Sentiment analysis is basically the process of determining the attitude or the emotion of the writer, \n",
"#i.e., whether it is positive or negative or neutral.\n",
"#polarity stands for negative and positive.range[-1,1]\n",
"#Subjective sentences generally refer to personal opinion, emotion or judgment[0,1]"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Sentiment(polarity=-0.8, subjectivity=0.9)"
]
},
"execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pyaudio\n",
"import speech_recognition as sr\n",
"from textblob import TextBlob\n",
"# from textblob.sentiments import NaiveBayesAnalyzer\n",
"r=sr.Recognizer()\n",
"sr.Microphone.list_microphone_names()\n",
"mic=sr.Microphone(device_index=1)\n",
"with mic as source:\n",
" audio=r.listen(source) \n",
"r.recognize_google(audio)\n",
"# audio=str(audio)\n",
"\n",
"TextBlob(str(r.recognize_google(audio))).sentiment\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"TextBlob(\"naly\")"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Loading