Skip to content
forked from gbolmier/funk-svd

⚡ A python fast implementation of the famous SVD algorithm popularized by Simon Funk during Netflix Prize

License

Notifications You must be signed in to change notification settings

sicot-f/funk-svd

 
 

Repository files navigation

⚡ funk-svd Build Status License

funk-svd is a Python 3 library implementing a fast version of the famous SVD algorithm popularized by Simon Funk (here) during the Neflix Prize contest.

Numba is used to speed up our algorithm, enabling us to run over 10 times faster than Surprise's Cython implementation (cf. benchmark notebook).

Movielens 20M RMSE MAE Time
Surprise 0.88 0.68 10 min 40 sec
Funk-svd 0.88 0.68 42 sec

Installation

Run pip install git+https://github.com/gbolmier/funk-svd in a terminal.

If you want to install funk-svd in a specific conda environment beware of using the corresponding local pip.

Quick example

run_experiment.py:

>>> import pandas as pd
>>> import numpy as np

>>> from funk_svd.dataset import fetch_ml_ratings
>>> from funk_svd import SVD

>>> from sklearn.metrics import mean_absolute_error


>>> df = fetch_ml_ratings(variant='100k')

>>> train = df.sample(frac=0.8, random_state=7)
>>> val = df.drop(train.index.tolist()).sample(frac=0.5, random_state=8)
>>> test = df.drop(train.index.tolist()).drop(val.index.tolist())

>>> svd = SVD(learning_rate=0.001, regularization=0.005, n_epochs=100,
...           n_factors=15, min_rating=1, max_rating=5)

>>> svd.fit(X=train, X_val=val, early_stopping=True, shuffle=False)
Preprocessing data...

Epoch 1/...

>>> pred = svd.predict(test)
>>> mae = mean_absolute_error(test['rating'], pred)

>>> print(f'Test MAE: {mae:.2f}')
Test MAE: 0.75

Funk SVD for recommendation in a nutshell

We have a huge sparse matrix:

storing known ratings for a set of users and items:

The idea is to estimate unknown ratings by factorizing the rating matrix into two smaller matrices representing user and item characteristics:

We call these two matrices users and items latent factors. Then, by applying the dot product between both matrices we can reconstruct our rating matrix. The trick is that the empty values will now contain estimated ratings.

In order to get more accurate results, the global average rating as well as the user and item biases are used in addition:

where K stands for known ratings.

Then, we can estimate any rating by applying:

The learning step consists in performing the SGD algorithm where for each known rating the biases and latent factors are updated as follows:

where alpha is the learning rate and lambda is the regularization term.

License

MIT license, see here.

About

⚡ A python fast implementation of the famous SVD algorithm popularized by Simon Funk during Netflix Prize

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 50.8%
  • Python 49.2%