-
Notifications
You must be signed in to change notification settings - Fork 80
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #182 from stanfordnlp/olmo
[P2] Add OLMo models.
- Loading branch information
Showing
3 changed files
with
98 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,93 @@ | ||
""" | ||
Each modeling file in this library is a mapping between | ||
abstract naming of intervention anchor points and actual | ||
model module defined in the huggingface library. | ||
We also want to let the intervention library know how to | ||
config the dimensions of intervention based on model config | ||
defined in the huggingface library. | ||
""" | ||
|
||
|
||
import torch | ||
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer | ||
from ..constants import * | ||
|
||
|
||
olmo_type_to_module_mapping = { | ||
"block_input": ("layers[%s]", CONST_INPUT_HOOK), | ||
"block_output": ("layers[%s]", CONST_OUTPUT_HOOK), | ||
"mlp_activation": ("layers[%s].mlp.act_fn", CONST_OUTPUT_HOOK), | ||
"mlp_output": ("layers[%s].mlp", CONST_OUTPUT_HOOK), | ||
"mlp_input": ("layers[%s].mlp", CONST_INPUT_HOOK), | ||
"attention_value_output": ("layers[%s].self_attn.o_proj", CONST_INPUT_HOOK), | ||
"head_attention_value_output": ("layers[%s].self_attn.o_proj", CONST_INPUT_HOOK, (split_head_and_permute, "n_head")), | ||
"attention_output": ("layers[%s].self_attn", CONST_OUTPUT_HOOK), | ||
"attention_input": ("layers[%s].self_attn", CONST_INPUT_HOOK), | ||
"query_output": ("layers[%s].self_attn.q_proj", CONST_OUTPUT_HOOK), | ||
"key_output": ("layers[%s].self_attn.k_proj", CONST_OUTPUT_HOOK), | ||
"value_output": ("layers[%s].self_attn.v_proj", CONST_OUTPUT_HOOK), | ||
"head_query_output": ("layers[%s].self_attn.q_proj", CONST_OUTPUT_HOOK, (split_head_and_permute, "n_head")), | ||
"head_key_output": ("layers[%s].self_attn.k_proj", CONST_OUTPUT_HOOK, (split_head_and_permute, "n_kv_head")), | ||
"head_value_output": ("layers[%s].self_attn.v_proj", CONST_OUTPUT_HOOK, (split_head_and_permute, "n_kv_head")), | ||
} | ||
|
||
|
||
olmo_type_to_dimension_mapping = { | ||
"n_head": ("num_attention_heads",), | ||
"n_kv_head": ("num_key_value_heads",), | ||
"block_input": ("hidden_size",), | ||
"block_output": ("hidden_size",), | ||
"mlp_activation": ("intermediate_size",), | ||
"mlp_output": ("hidden_size",), | ||
"mlp_input": ("hidden_size",), | ||
"attention_value_output": ("hidden_size",), | ||
"head_attention_value_output": ("hidden_size/num_attention_heads",), | ||
"attention_output": ("hidden_size",), | ||
"attention_input": ("hidden_size",), | ||
"query_output": ("hidden_size",), | ||
"key_output": ("hidden_size",), | ||
"value_output": ("hidden_size",), | ||
"head_query_output": ("hidden_size/num_attention_heads",), | ||
"head_key_output": ("hidden_size/num_attention_heads",), | ||
"head_value_output": ("hidden_size/num_attention_heads",), | ||
} | ||
|
||
|
||
"""olmo model with LM head""" | ||
olmo_lm_type_to_module_mapping = {} | ||
for k, v in olmo_type_to_module_mapping.items(): | ||
olmo_lm_type_to_module_mapping[k] = (f"model.{v[0]}", ) + v[1:] | ||
|
||
|
||
olmo_lm_type_to_dimension_mapping = olmo_type_to_dimension_mapping | ||
|
||
|
||
"""olmo model with classifier head""" | ||
olmo_classifier_type_to_module_mapping = {} | ||
for k, v in olmo_type_to_module_mapping.items(): | ||
olmo_classifier_type_to_module_mapping[k] = (f"model.{v[0]}", ) + v[1:] | ||
|
||
|
||
olmo_classifier_type_to_dimension_mapping = olmo_type_to_dimension_mapping | ||
|
||
|
||
def create_olmo( | ||
name="allenai/OLMo-7B-0424-hf", cache_dir=None, dtype=torch.bfloat16, config=None, | ||
revision='main' | ||
): | ||
"""Creates a OLMo Causal LM model, config, and tokenizer from the given name and revision""" | ||
if config is None: | ||
config = AutoConfig.from_pretrained(name, cache_dir=cache_dir) | ||
olmo = AutoModelForCausalLM.from_pretrained( | ||
name, | ||
config=config, | ||
cache_dir=cache_dir, | ||
torch_dtype=dtype, | ||
) | ||
tokenizer = AutoTokenizer.from_pretrained(name, cache_dir=cache_dir) | ||
else: | ||
olmo = AutoModelForCausalLM(config, cache_dir=cache_dir, revision=revision) | ||
tokenizer = AutoTokenizer.from_pretrained(name, cache_dir=cache_dir) | ||
print("loaded model") | ||
return config, tokenizer, olmo |