Skip to content

timothyn617/DatasetCondensation

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Dataset Condensation with Gradient Matching [PDF]

Method

Figure 1: Dataset Condensation (left) aims to generate a small set of synthetic images that can match the performance of a network trained on a large image dataset. Our method (right) realizes this goal by learning a synthetic set such that a deep network trained on it and the large set produces similar gradients w.r.t. the parameters. The synthetic data can later be used to train a network from scratch in a fraction of the original computational load. CE denotes Cross-Entropy.

Setup

install packages in the requirements.

Basic experiments - Table 1

python main.py  --dataset CIFAR10  --model ConvNet  --ipc 10
# --dataset: MNIST, FashionMNIST, SVHN, CIFAR10
# --ipc (images/class): 1, 10, 20, 30, 40, 50

Cross-architecture experiments - Table 2

python main.py  --dataset MNIST  --model ConvNet  --ipc 1  --eval_mode M
# --model: MLP, LeNet, ConvNet, AlexNet, VGG11BN, ResNet18BN_AP, Note: set --lr_img 0.01 when --model MLP

Ablation study on different modules - Table T2, T3, T4, T5, T6, T7

python main.py  --dataset MNIST  --model ConvNetW32  --eval_mode W  --ipc 1 
python main.py  --dataset MNIST  --model ConvNetW64  --eval_mode W  --ipc 1
python main.py  --dataset MNIST  --model ConvNetW128  --eval_mode W  --ipc 1
python main.py  --dataset MNIST  --model ConvNetW256  --eval_mode W  --ipc 1

python main.py  --dataset MNIST  --model ConvNetD1  --eval_mode D  --ipc 1
python main.py  --dataset MNIST  --model ConvNetD2  --eval_mode D  --ipc 1
python main.py  --dataset MNIST  --model ConvNetD3  --eval_mode D  --ipc 1
python main.py  --dataset MNIST  --model ConvNetD4  --eval_mode D  --ipc 1

python main.py  --dataset MNIST  --model ConvNetAS  --eval_mode A  --ipc 1
python main.py  --dataset MNIST  --model ConvNetAR  --eval_mode A  --ipc 1
python main.py  --dataset MNIST  --model ConvNetAL  --eval_mode A  --ipc 1

python main.py  --dataset MNIST  --model ConvNetNP  --eval_mode P  --ipc 1
python main.py  --dataset MNIST  --model ConvNetMP  --eval_mode P  --ipc 1 
python main.py  --dataset MNIST  --model ConvNetAP  --eval_mode P  --ipc 1

python main.py  --dataset MNIST  --model ConvNetNN  --eval_mode N  --ipc 1
python main.py  --dataset MNIST  --model ConvNetBN  --eval_mode N  --ipc 1 
python main.py  --dataset MNIST  --model ConvNetLN  --eval_mode N  --ipc 1
python main.py  --dataset MNIST  --model ConvNetIN  --eval_mode N  --ipc 1
python main.py  --dataset MNIST  --model ConvNetGN  --eval_mode N  --ipc 1


python main.py  --dataset MNIST  --model ConvNet  --ipc 1  --dis_metric mse
# --dis_metric (gradient distance metrics): ours, mse, cos
# --model: MLP, LeNet, ConvNet, AlexNet, VGG11BN, ResNet18BN_AP

Performance

MNIST FashionMNIST SVHN CIFAR10
1 img/cls 91.7 70.5 31.2 28.3
10 img/cls 97.4 82.3 76.1 44.9
50 img/cls 98.8 83.6 82.3 53.9

Table 1: Testing accuracies (%) of ConvNets trained from scratch on 1, 10 or 50 synthetic image(s)/class.

Visualization

Figure 2: Visualization of condensed 1 image/class with ConvNet for MNIST, FashionMNIST, SVHN and CIFAR10. Average testing accuracies on randomly initialized ConvNets are 91.7%, 70.5%, 31.2% and 28.3% respectively.

Figure 3: Visualization of condensed 10 images/class with ConvNet for MNIST, FashionMNIST, SVHN and CIFAR10. Average testing accuracies on randomly initialized ConvNets are 97.4%, 82.3%, 76.1% and 44.9% respectively.

Citation

@inproceedings{
zhao2021dataset,
title={Dataset Condensation with Gradient Matching},
author={Bo Zhao and Konda Reddy Mopuri and Hakan Bilen},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=mSAKhLYLSsl}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%