Dual chunk attention is a training-free and effective method for extending the context window of large language models (LLMs) to more than 8x times their original pre-training length. We refer to the Llama-based model with dual chunk attention as ChunkLlama. DCA can be seamlessly integrated with (1) popular extrapolation methods such as Positional Interpolation (PI), NTK-Aware RoPE, and YaRN; and (2) widely-used libraries for memory-efficient inference like FlashAttention and vLLM.
Due to the high cost of continual pretraining on longer sequences, previously released long-context models are typically limited to scales of 7B/13B. We demonstrate that by applying DCA to Llama-2/3 70B, the model exhibits surprising extrapolation capabilities (100k context length) and a very strong understanding of practical long-context tasks.
- We add results for ChunkLlama3. Llama3, which uses 8k pretraining contexts, has the same architecture as Llama2, so there is no need to change the code. Here are the language modeling results on PG19:
Model | 4k | 8k | 16k | 32k | 64k | 96k | 128k | 160k |
---|---|---|---|---|---|---|---|---|
ChunkLlama3-8b | 9.04 | 8.71 | 8.61 | 8.62 | 8.95 | 9.43 | 10.04 | 10.66 |
ChunkLlama3-70b | 5.36 | 5.16 | 5.14 | 5.14 | 5.21 | 5.32 | 5.40 | 5.45 |
ChunkLlama3-8b achieves 100% retrieval accuracy across all document depths. Our few-shot results on the base model and zero-shot results on chat models show that ChunkLlama3-70b achieves performance on par with GPT-4 (2023/06/13) and Llama2 Long 70b (Detailed results).
- We add Flash Decoding for efficient inference with KV cache. Based on our experiments on Llama2 7b, a single A100 can support inference with KV cache at 90k (50k->90k) input, and 8 A100s can support inputs over 400k tokens. We also provide the monkey patch for the standard Llama2 model here
- We add Mistral/Mixtral and Qwen which can be scaled to 200K+ contexts
As a training-free method, only one line needs to be added to your original inference code for the Llama2 model:
# `transformers==4.37.2`
from chunkllama_attn_replace import replace_with_chunkllama
# flash decoding: from flash_decoding_chunkllama import replace_with_chunkllama
replace_with_chunkllama(pretraining_length=4096) # pretraining_length=8192 if you are using Llama3
For other foundation models:
from chunkllama_attn_replace import replace_with_chunkmistral, replace_with_chunkmixtral
from chunkqwen_attn_replace import replace_with_chunkqwen
replace_with_chunkmistral(pretraining_length=32384) # Mistral-v0.2
replace_with_chunkmixtral(pretraining_length=32384) # Mixtral MOE model
replace_with_chunkqwen(pretraining_length=32384) # Qwen 1.5
from transformers import AutoTokenizer, AutoModelForCausalLM
from chunkllama_attn_replace import replace_with_chunkllama
# or from flash_decoding_chunkllama import replace_with_chunkllama
##### add this line #####
replace_with_chunkllama(pretraining_length=4096)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf", attn_implementation="flash_attention_2", trust_remote_code=True, torch_dtype=torch.bfloat16)
inputs = tokenizer("Long...docs\n Q: How to extend the context window of LLMs? ", return_tensors="pt")
output_ids = model.generate(**inputs, max_length=128)[0]
print(tokenizer.decode(output_ids))
We have provided a collection of influential papers on long-context scaling of LLMs in the Popular_PDFs
directory. By using the --pdf
parameter, you can access the latest advancements in this field through ChunkLlama⭐.
- Prepare the environment.
pip install -r requirements.txt
pip install flash-attn --no-build-isolation (FlashAttention >= 2.5.0)
- Download the pretraining weights (Extended ctx means the context length enabled by DCA).
Supported Models | Extended ctx |
---|---|
Base Models | |
Llama-2-7b-hf (4k) | 32k |
Llama-2-13b-hf (4k ) | 32k |
Llama-2-70b-hf (4k) | 128k |
Meta-Llama-3-8B (8k) | 96k |
Meta-Llama-3-70B (8k) | 200k+ |
Together's LLaMA-2-7b-32k | 200k |
SFT Models | |
Llama-2-7b-chat-hf (4k) | 32k |
Llama-2-13b-chat-hf (4k) | 32k |
Llama-2-70b-chat-hf (4k) | 128k |
Meta-Llama-3-8B-Instruct (8k) | 96k |
Meta-Llama-3-70B-Instruct (8k) | 200k+ |
Vicuna-1.5-7b-16k | 200k |
Vicuna-1.5-13b-16k | 200k |
Mixtral 8x7b & Mistral 7b | 200k+ |
Qwen1.5 中文 | 200k |
- Deploy your own demo.
We provide three examples of how to employ DCA on popular LLMs in
run_chunkllama_100k.py
,run_together_200k.py
andrun_vicuna_200k.py
.
Run the demo:
python run_chunkllama_100k.py --max_length 16000 --scale 13b (7b/13b/70b) --pdf Popular_PDFs/longlora.pdf
If you have OOM
problems when dealing with longer input or larger models, we recommend using Tensor Parallelism:
deepspeed run_chunkllama_100k_ds.py --max_length 64000 --scale 13b (7b/13b/70b) --pdf Popular_PDFs/longlora.pdf
📌 Notice: We have found that although 7B models can achieve low perplexity on long contexts, they often make mistakes in practical tasks, including those with fine-tuned versions. Therefore, we recommend using the larger 13B (ChunkLlama-13b, Chunk-Vicuna-13b) or 70B (ChunkLlama-70B) models for higher accuracy.
ChunkLlama can be further improved by fine-tuning on long conversations. We further train ChunkLlama on with a context window of 16k on concatenated dialogues from the previous SFT datasets ShareGPT and AlpacaGPT4. The data we use is available here
cd fine-tune
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
export WANDB_MODE=dryrun
python -m torch.distributed.run --nproc_per_node=8 \
train_chunkllama_16k.py \
--model_name_or_path meta-llama/llama-2-7b-chat-hf \
--bf16 \
--output_dir checkpoints/chunkllama-7b-release \
--max_steps 1600 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 2 \
--evaluation_strategy no \
--save_strategy steps \
--save_steps 400 \
--save_total_limit 2 \
--learning_rate 2e-5 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--fsdp "full_shard auto_wrap" \
--fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
--tf32 True \
--model_max_length 16384 \
--gradient_checkpointing True \
--lazy_preprocess True \
--pretraining_length 4096
You can change --model_name_or_path
, --output_dir
to your own directory. In our experiments, we directly train the chat version of Llama2, you can also use its base version.
This section contains the data and code for validating ChunkLlama on different types of long-context tasks.
cd ppl
python test_ppl.py --seq_len 16384 --scale 13b (7b/13b/70b) --data_path pg19_llama3.validation.bin
where --seq_len 16384
denotes the length of input prompts. We use tokenized the tokenized validation split of PG19 provided by longlora. The raw data and tokenized data which can directly be loaded are available here.
We provide a manner to test the passkey retrieval accuracy. For example,
cd passkey
python test_passkey.py --seq_len 16384 --scale 13b (7b/13b/70b)
We provide a manner to test the passkey retrieval accuracy. For example,
cd needle_in_a_haystack
# the following command will generate a jsonl file of the original version
python retrieve_needle.py --max_length 192k --model mistral --pretraining_length 32384
# this will generate the ChunkLlama file: python retrieve_needle.py --max_length 192k --model mistral --pretraining_length 32384 --dca
# for Llama: python retrieve_needle.py --max_length 192k --model meta-llama/llama-2-7b-chat-hf --pretraining_length 4096 [--dca]
# get the figure
python draw.py
The experimental settings of few-shot learning are the same as that in Llama2 Long. We use 4 popular long-context benchmarks: NarrativeQA, QMSum, Qasper, and Quality. We also release the data together with in-context examples in few-shot-data. We report the results on their validation sets. The in-context examples are randomly selected from the training set.
cd few-shot
python test_few_shot.py --data_path data/few_shot_quality.jsonl --max_length 16k --scale 13b
where --data_path
denotes the path to the dataset assuming the data is saved in few-shot/data/
.
The generation results will be saved to Predictions/Chunkllama-13b16k/few_shot_quality.json
We use the validation scripts provided by Scrolls to obtain the results:
python auto_eval.py --dataset_name quality --metrics_output_dir ./ --predictions Predictions/Chunkllama-13b16k/few_shot_quality.json --test_data_file data/few_shot_quality.jsonl
We also test our method on the chat version of Llama2 on zero-shot learning tasks. Considering the challenges of fair evaluation on open-ended tasks. We select 4 closed-ended tasks from L-Eval with diverse input lengths ranging from 3k to 27 tokens.
cd zero-shot
python test_zero_shot.py --task_path Closed-ended-tasks/coursera.jsonl --max_length 16k --scale 13b
The experimental settings and evaluation scripts are the same as those in the official repository of L-Eval.
python Evaluation/auto_eval.py --pred_file Predictions/Chunkllama-13b16k/coursera.jsonl
Model | 4k | 8k | 16k | 32k | 64k | 96k | 128k | 160k |
---|---|---|---|---|---|---|---|---|
Llama3-8b | 9.04 | 8.71 | 78.88 | >100 | >100 | >100 | >100 | >100 |
ChunkLlama3-8b | 9.04 | 8.71 | 8.61 | 8.62 | 8.95 | 9.43 | 10.04 | 10.66 |
Llama3-70b | 5.36 | 5.16 | >100 | >100 | >100 | >100 | >100 | >100 |
ChunkLlama3-70b | 5.36 | 5.16 | 5.14 | 5.14 | 5.21 | 5.32 | 5.40 | 5.45 |
Few-shot results on 4 research benchmarks:
Model | NarrativeQA(0-shot) | Qasper(2-shot) | QuALITY(2-shot) | QMSum(1-shot) |
---|---|---|---|---|
ChunkLlama3-8b | 27.4 | 30.5 | 52.6 | 15.4 |
Llama2 Long-7b | 21.9 | 27.8 | 43.2 | 14.9 |
ChunkLlama3-70b | -- | 33.1 | 75.4 | 16.0 |
Llama2 Long-70b | 30.9 | 35.7 | 79.7 | 16.5 |
Zero-shot results (with Chat models) on L-Eval:
Model | TOEFL | QuALITY | Coursera | SFiction |
---|---|---|---|---|
ChunkLlama3-8b | 83.27 | 63.86 | 56.24 | 70.31 |
ChunkLlama3-70b | 84.75 | 82.17 | 76.88 | 75.78 |
GPT4-32k (2023) | 84.38 | 82.17 | 75.58 | 74.99 |
We sincerely appreciate the assistance provided by the following people (works) for ChunkLlama:
- We gain useful background and insights from Jianlin Su's blogs. We recommend interested researchers to read his blogs to get a better understanding of the long-context scaling of LLMs.
- This work is built upon the LLaMA2 as the pre-trained models. We also use Vicuna, Together's Llama2 fork, and CodeLlama.
- We use the code from LongChat for the finetuning process and code from longlora for validating our method.
- We thank Yukang Chen for his help and valuable discussions.
- We thank Hang Yan for his valuable comments on this work.
@misc{an2024trainingfree,
title={Training-Free Long-Context Scaling of Large Language Models},
author={Chenxin An and Fei Huang and Jun Zhang and Shansan Gong and Xipeng Qiu and Chang Zhou and Lingpeng Kong},
year={2024},
eprint={2402.17463},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- ChunkLlama is licensed under the Apache License 2.0. This means that it requires the preservation of copyright and license notices.
- Data and weights are under CC-BY-NC 4.0 License. They are licensed for research use only, and allowed only non-commercial. Models trained using the dataset should not be used outside of research purposes.