Skip to content

Standardizes code formatting and improves efficiency #253

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
72 changes: 40 additions & 32 deletions tutorials/01-basics/feedforward_neural_network/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,90 +5,98 @@


# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Hyper-parameters
# Hyper-parameters
input_size = 784
hidden_size = 500
num_classes = 10
num_epochs = 5
batch_size = 100
learning_rate = 0.001

# MNIST dataset
train_dataset = torchvision.datasets.MNIST(root='../../data',
train=True,
transform=transforms.ToTensor(),
download=True)
# MNIST dataset
train_dataset = torchvision.datasets.MNIST(
root="../../data", train=True, transform=transforms.ToTensor(), download=True
)

test_dataset = torchvision.datasets.MNIST(root='../../data',
train=False,
transform=transforms.ToTensor())
test_dataset = torchvision.datasets.MNIST(
root="../../data", train=False, transform=transforms.ToTensor()
)

# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset, batch_size=batch_size, shuffle=True
)

test_loader = torch.utils.data.DataLoader(
dataset=test_dataset, batch_size=batch_size, shuffle=False
)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)

# Fully connected neural network with one hidden layer
class NeuralNet(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(NeuralNet, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, num_classes)
self.fc2 = nn.Linear(hidden_size, num_classes)

def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
return out


model = NeuralNet(input_size, hidden_size, num_classes).to(device)

# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

# Train the model
total_step = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
for i, (images, labels) in enumerate(train_loader):
# Move tensors to the configured device
images = images.reshape(-1, 28*28).to(device)
images = images.reshape(-1, 28 * 28).to(device)
labels = labels.to(device)

# Forward pass
outputs = model(images)
loss = criterion(outputs, labels)

# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()

if (i+1) % 100 == 0:
print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, total_step, loss.item()))

if (i + 1) % 100 == 0:
print(
"Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}".format(
epoch + 1, num_epochs, i + 1, total_step, loss.item()
)
)

# Test the model
# In test phase, we don't need to compute gradients (for memory efficiency)
with torch.no_grad():
with torch.inference_mode():
correct = 0
total = 0
for images, labels in test_loader:
images = images.reshape(-1, 28*28).to(device)
images = images.reshape(-1, 28 * 28).to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: {} %'.format(100 * correct / total))
print(
"Accuracy of the network on the 10000 test images: {} %".format(
100 * correct / total
)
)

# Save the model checkpoint
torch.save(model.state_dict(), 'model.ckpt')
torch.save(model.state_dict(), "model.ckpt")
58 changes: 32 additions & 26 deletions tutorials/01-basics/logistic_regression/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,63 +4,65 @@
import torchvision.transforms as transforms


# Hyper-parameters
input_size = 28 * 28 # 784
# Hyper-parameters
input_size = 28 * 28 # 784
num_classes = 10
num_epochs = 5
batch_size = 100
learning_rate = 0.001

# MNIST dataset (images and labels)
train_dataset = torchvision.datasets.MNIST(root='../../data',
train=True,
transform=transforms.ToTensor(),
download=True)
train_dataset = torchvision.datasets.MNIST(
root="../../data", train=True, transform=transforms.ToTensor(), download=True
)

test_dataset = torchvision.datasets.MNIST(root='../../data',
train=False,
transform=transforms.ToTensor())
test_dataset = torchvision.datasets.MNIST(
root="../../data", train=False, transform=transforms.ToTensor()
)

# Data loader (input pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset, batch_size=batch_size, shuffle=True
)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
test_loader = torch.utils.data.DataLoader(
dataset=test_dataset, batch_size=batch_size, shuffle=False
)

# Logistic regression model
model = nn.Linear(input_size, num_classes)

# Loss and optimizer
# nn.CrossEntropyLoss() computes softmax internally
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

# Train the model
total_step = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
# Reshape images to (batch_size, input_size)
images = images.reshape(-1, input_size)

# Forward pass
outputs = model(images)
loss = criterion(outputs, labels)

# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()

if (i+1) % 100 == 0:
print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, total_step, loss.item()))

if (i + 1) % 100 == 0:
print(
"Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}".format(
epoch + 1, num_epochs, i + 1, total_step, loss.item()
)
)

# Test the model
# In test phase, we don't need to compute gradients (for memory efficiency)
with torch.no_grad():
with torch.inference_mode():
correct = 0
total = 0
for images, labels in test_loader:
Expand All @@ -70,7 +72,11 @@
total += labels.size(0)
correct += (predicted == labels).sum()

print('Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))
print(
"Accuracy of the model on the 10000 test images: {} %".format(
100 * correct / total
)
)

# Save the model checkpoint
torch.save(model.state_dict(), 'model.ckpt')
torch.save(model.state_dict(), "model.ckpt")
Loading