Skip to content

zgcharaf/ECB-similarity-Research-Paper-Replication-Exentention

Repository files navigation

ECB similarity Research Paper Replication & Exentention

Terms :

CAR : Cumulative Abnormal or Excess returns of the MSCI Euro Index (EUR)

Findings & Summary

  • Project replicates ECB Introductory Statement text-similarity (1999–2023), linking communication to market reactions.
  • Methods: NLP (bigrams Jaccard, LM tone), statement-frequency ΔMRO, macro controls, HAC(6) errors, |CAR| over ±1/±3/±5/±7 days.
  • Pre-2014: similarity increases with time (convergence), consistent with more templated language.
  • Post-2014: similarity declines with time (greater novelty), robust to controls and standardization.
  • Market impact: tone×similarity raises absolute CAR post-2014 (notably at ±7d); tone alone is weak.
  • Controls: Output gap and inflation sometimes dampen |CAR| post-2014; ΔMRO levels/moves have limited incremental power.
  • Bottom line: ECB communication style shifted after 2014, and tone + novelty together move markets more than tone by itself.

Figure 1 — Statement similarity over time

Figure 1: ECB statement similarity (median Jaccard bigrams, quarterly)

Figure 2 — The Pessimism measured using the Loughran-Mcdonald dictionnary.

Figure 2: |CAR| (±5 trading days), annual mean

Results (HAC(6), main |CAR| window ±5d, winsorized 1%)

Table 3 — Statement similarity vs time (Depvar: logSimilarity)

Sample Spec Key regressor Coef Sig
1999–2023 (1) baseline logTime_days 0.149 0.001
(2) + controls logTime_days −0.122 0.047
(4) count + controls logTime_count −0.113 0.047
1999–2013 (1) baseline logTime_days 0.724 0.055
(2) + controls logTime_days 0.426 0.071
(4) count + controls logTime_count 0.488 0.072
2014–2023 (1) baseline logTime_days −8.489 ★★ 0.059
(2) + controls logTime_days −15.526 ★★ 0.109
(4) count + controls logTime_count −20.498 ★★ 0.104

Takeaway: Similarity rose pre-2014 (convergence) but fell post-2014 (greater novelty).


Table 4 — Market impact (Depvar: |CAR|_w, ±5d)

Sample Spec Regressor Coef Sig
1999–2023 (1) baseline pessimism 0.148 0.004
(3) interaction only pessimism×similarity 0.614 0.004
(4) + controls pessimism×similarity 0.760 0.034
1999–2013 (1) baseline pessimism 0.176 0.004
(3) interaction only pessimism×similarity 1.604 0.004
(4) + controls pessimism×similarity 1.169 0.035
2014–2023 (1) baseline pessimism 0.296 0.030
(3) interaction only pessimism×similarity 0.695 ★★ 0.020
(4) + controls pessimism×similarity 0.816 ★★ 0.058

Window robustness (post-2014): ±1d: n.s. • ±3d: interaction n.s., OutputGap − (p≈.01) • ±7d: interaction + (p≈.01), OutputGap −, Inflation −.

Legend: ★ p<0.10, ★★ p<0.05 (HAC SEs).

How we measure Similarity and Pessimism

Similarity (statement-to-previous statement)

  • Scope: only the Introductory Statement segment (Q&A and boilerplate trimmed).

  • Preprocess: lowercase → strip punctuation → remove English stop-words → Porter stemmer → build token list.

  • Construct bigrams (pairs of consecutive tokens) and take set union per statement.

  • Compute Jaccard similarity vs the immediately preceding meeting:

    $$ \text{sim}_t=\frac{|B_t \cap B_{t-1}|}{|B_t \cup B_{t-1}|} $$

  • Use logSimilarity = log(max(sim_t, 1e-9)) to stabilize tails for OLS.

Pessimism (tone of the statement)

  • Tokens: same text segment, but without stemming (keeps dictionary words intact).

  • Dictionary: Loughran–McDonald finance lexicon (Positive/Negative lists).

  • Counts: neg_t = #Negative words, pos_t = #Positive words, N_t = total tokens.

  • Measure:

    $$ \text{pessimism}_t = \frac{\text{neg}_t - \text{pos}_t}{N_t} $$

  • Used directly and in the interaction pessimism × similarity; standardized (z-scored) in some specs.

Reference: Amaya & Filbien (2015), Journal of Financial Markets. ScienceDirect link

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •