CAR : Cumulative Abnormal or Excess returns of the MSCI Euro Index (EUR)
- Project replicates ECB Introductory Statement text-similarity (1999–2023), linking communication to market reactions.
- Methods: NLP (bigrams Jaccard, LM tone), statement-frequency ΔMRO, macro controls, HAC(6) errors, |CAR| over ±1/±3/±5/±7 days.
- Pre-2014: similarity increases with time (convergence), consistent with more templated language.
- Post-2014: similarity declines with time (greater novelty), robust to controls and standardization.
- Market impact: tone×similarity raises absolute CAR post-2014 (notably at ±7d); tone alone is weak.
- Controls: Output gap and inflation sometimes dampen |CAR| post-2014; ΔMRO levels/moves have limited incremental power.
- Bottom line: ECB communication style shifted after 2014, and tone + novelty together move markets more than tone by itself.
Sample | Spec | Key regressor | Coef | Sig | R² |
---|---|---|---|---|---|
1999–2023 | (1) baseline | logTime_days | 0.149 | 0.001 | |
(2) + controls | logTime_days | −0.122 | 0.047 | ||
(4) count + controls | logTime_count | −0.113 | 0.047 | ||
1999–2013 | (1) baseline | logTime_days | 0.724 | ★ | 0.055 |
(2) + controls | logTime_days | 0.426 | 0.071 | ||
(4) count + controls | logTime_count | 0.488 | ★ | 0.072 | |
2014–2023 | (1) baseline | logTime_days | −8.489 | ★★ | 0.059 |
(2) + controls | logTime_days | −15.526 | ★★ | 0.109 | |
(4) count + controls | logTime_count | −20.498 | ★★ | 0.104 |
Takeaway: Similarity rose pre-2014 (convergence) but fell post-2014 (greater novelty).
Sample | Spec | Regressor | Coef | Sig | R² |
---|---|---|---|---|---|
1999–2023 | (1) baseline | pessimism | 0.148 | 0.004 | |
(3) interaction only | pessimism×similarity | 0.614 | 0.004 | ||
(4) + controls | pessimism×similarity | 0.760 | ★ | 0.034 | |
1999–2013 | (1) baseline | pessimism | 0.176 | 0.004 | |
(3) interaction only | pessimism×similarity | 1.604 | 0.004 | ||
(4) + controls | pessimism×similarity | 1.169 | 0.035 | ||
2014–2023 | (1) baseline | pessimism | 0.296 | ★ | 0.030 |
(3) interaction only | pessimism×similarity | 0.695 | ★★ | 0.020 | |
(4) + controls | pessimism×similarity | 0.816 | ★★ | 0.058 |
Window robustness (post-2014): ±1d: n.s. • ±3d: interaction n.s., OutputGap − (p≈.01) • ±7d: interaction + (p≈.01), OutputGap −, Inflation −.
Legend: ★ p<0.10, ★★ p<0.05 (HAC SEs).
Similarity (statement-to-previous statement)
-
Scope: only the Introductory Statement segment (Q&A and boilerplate trimmed).
-
Preprocess: lowercase → strip punctuation → remove English stop-words → Porter stemmer → build token list.
-
Construct bigrams (pairs of consecutive tokens) and take set union per statement.
-
Compute Jaccard similarity vs the immediately preceding meeting:
$$ \text{sim}_t=\frac{|B_t \cap B_{t-1}|}{|B_t \cup B_{t-1}|} $$ -
Use
logSimilarity = log(max(sim_t, 1e-9))
to stabilize tails for OLS.
Pessimism (tone of the statement)
-
Tokens: same text segment, but without stemming (keeps dictionary words intact).
-
Dictionary: Loughran–McDonald finance lexicon (Positive/Negative lists).
-
Counts:
neg_t = #Negative words
,pos_t = #Positive words
,N_t = total tokens
. -
Measure:
$$ \text{pessimism}_t = \frac{\text{neg}_t - \text{pos}_t}{N_t} $$
-
Used directly and in the interaction pessimism × similarity; standardized (z-scored) in some specs.
Reference: Amaya & Filbien (2015), Journal of Financial Markets. ScienceDirect link