Skip to content

fix: enable full decimal to decimal support #1385

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/source/user-guide/compatibility.md
Original file line number Diff line number Diff line change
Expand Up @@ -162,6 +162,7 @@ The following cast operations are generally compatible with Spark except for the
| decimal | long | |
| decimal | float | |
| decimal | double | |
| decimal | decimal | |
| decimal | string | There can be formatting differences in some case due to Spark using scientific notation where Comet does not |
| string | boolean | |
| string | byte | |
Expand Down
9 changes: 8 additions & 1 deletion native/spark-expr/src/conversion_funcs/cast.rs
Original file line number Diff line number Diff line change
Expand Up @@ -872,6 +872,13 @@ fn cast_array(
let array = array_with_timezone(array, cast_options.timezone.clone(), Some(to_type))?;
let from_type = array.data_type().clone();

let native_cast_options: CastOptions = CastOptions {
safe: !matches!(cast_options.eval_mode, EvalMode::Ansi), // take safe mode from cast_options passed
format_options: FormatOptions::new()
.with_timestamp_tz_format(TIMESTAMP_FORMAT)
.with_timestamp_format(TIMESTAMP_FORMAT),
};

let array = match &from_type {
Dictionary(key_type, value_type)
if key_type.as_ref() == &Int32
Expand Down Expand Up @@ -963,7 +970,7 @@ fn cast_array(
|| is_datafusion_spark_compatible(from_type, to_type, cast_options.allow_incompat) =>
{
// use DataFusion cast only when we know that it is compatible with Spark
Ok(cast_with_options(&array, to_type, &CAST_OPTIONS)?)
Ok(cast_with_options(&array, to_type, &native_cast_options)?)
}
_ => {
// we should never reach this code because the Scala code should be checking
Expand Down
3 changes: 2 additions & 1 deletion spark/src/main/scala/org/apache/comet/GenerateDocs.scala
Original file line number Diff line number Diff line change
Expand Up @@ -69,7 +69,8 @@ object GenerateDocs {
w.write("|-|-|-|\n".getBytes)
for (fromType <- CometCast.supportedTypes) {
for (toType <- CometCast.supportedTypes) {
if (Cast.canCast(fromType, toType) && fromType != toType) {
if (Cast.canCast(fromType, toType) && (fromType != toType || fromType.typeName
.contains("decimal"))) {
val fromTypeName = fromType.typeName.replace("(10,2)", "")
val toTypeName = toType.typeName.replace("(10,2)", "")
CometCast.isSupported(fromType, toType, None, CometEvalMode.LEGACY) match {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -70,13 +70,8 @@ object CometCast {
case _ =>
Unsupported
}
case (from: DecimalType, to: DecimalType) =>
if (to.precision < from.precision) {
// https://github.com/apache/datafusion/issues/13492
Incompatible(Some("Casting to smaller precision is not supported"))
} else {
Compatible()
}
case (_: DecimalType, _: DecimalType) =>
Compatible()
case (DataTypes.StringType, _) =>
canCastFromString(toType, timeZoneId, evalMode)
case (_, DataTypes.StringType) =>
Expand Down
63 changes: 36 additions & 27 deletions spark/src/test/scala/org/apache/comet/CometCastSuite.scala
Original file line number Diff line number Diff line change
Expand Up @@ -25,12 +25,12 @@ import scala.util.Random
import scala.util.matching.Regex

import org.apache.hadoop.fs.Path
import org.apache.spark.sql.{CometTestBase, DataFrame, SaveMode}
import org.apache.spark.sql.{CometTestBase, DataFrame, Row, SaveMode}
import org.apache.spark.sql.catalyst.expressions.Cast
import org.apache.spark.sql.execution.adaptive.AdaptiveSparkPlanHelper
import org.apache.spark.sql.functions.col
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.types.{DataType, DataTypes, DecimalType}
import org.apache.spark.sql.types.{DataType, DataTypes, DecimalType, StructField, StructType}

import org.apache.comet.expressions.{CometCast, CometEvalMode, Compatible}

Expand Down Expand Up @@ -981,12 +981,15 @@ class CometCastSuite extends CometTestBase with AdaptiveSparkPlanHelper {
}

test("cast between decimals with different precision and scale") {
// cast between default Decimal(38, 18) to Decimal(6,2)
val values = Seq(BigDecimal("12345.6789"), BigDecimal("9876.5432"), BigDecimal("123.4567"))
val df = withNulls(values)
.toDF("b")
.withColumn("a", col("b").cast(DecimalType(6, 2)))
checkSparkAnswer(df)
val rowData = Seq(
Row(BigDecimal("12345.6789")),
Row(BigDecimal("9876.5432")),
Row(BigDecimal("123.4567")))
val df = spark.createDataFrame(
spark.sparkContext.parallelize(rowData),
StructType(Seq(StructField("a", DataTypes.createDecimalType(10, 4)))))

castTest(df, DecimalType(6, 2))
}

test("cast between decimals with higher precision than source") {
Expand Down Expand Up @@ -1210,27 +1213,33 @@ class CometCastSuite extends CometTestBase with AdaptiveSparkPlanHelper {
val cometMessage =
if (cometException.getCause != null) cometException.getCause.getMessage
else cometException.getMessage
if (CometSparkSessionExtensions.isSpark40Plus) {
// for Spark 4 we expect to sparkException carries the message
assert(
sparkException.getMessage
.replace(".WITH_SUGGESTION] ", "]")
.startsWith(cometMessage))
} else if (CometSparkSessionExtensions.isSpark34Plus) {
// for Spark 3.4 we expect to reproduce the error message exactly
assert(cometMessage == sparkMessage)
// this if branch should only check decimal to decimal cast and errors when output precision, scale causes overflow.
if (df.schema("a").dataType.typeName.contains("decimal") && toType.typeName
.contains("decimal") && sparkMessage.contains("cannot be represented as")) {
assert(cometMessage.contains("too large to store"))
} else {
// for Spark 3.3 we just need to strip the prefix from the Comet message
// before comparing
val cometMessageModified = cometMessage
.replace("[CAST_INVALID_INPUT] ", "")
.replace("[CAST_OVERFLOW] ", "")
.replace("[NUMERIC_VALUE_OUT_OF_RANGE] ", "")

if (sparkMessage.contains("cannot be represented as")) {
assert(cometMessage.contains("cannot be represented as"))
if (CometSparkSessionExtensions.isSpark40Plus) {
// for Spark 4 we expect to sparkException carries the message
assert(
sparkException.getMessage
.replace(".WITH_SUGGESTION] ", "]")
.startsWith(cometMessage))
} else if (CometSparkSessionExtensions.isSpark34Plus) {
// for Spark 3.4 we expect to reproduce the error message exactly
assert(cometMessage == sparkMessage)
} else {
assert(cometMessageModified == sparkMessage)
// for Spark 3.3 we just need to strip the prefix from the Comet message
// before comparing
val cometMessageModified = cometMessage
.replace("[CAST_INVALID_INPUT] ", "")
.replace("[CAST_OVERFLOW] ", "")
.replace("[NUMERIC_VALUE_OUT_OF_RANGE] ", "")

if (sparkMessage.contains("cannot be represented as")) {
assert(cometMessage.contains("cannot be represented as"))
} else {
assert(cometMessageModified == sparkMessage)
}
}
}
}
Expand Down
Loading