-
Notifications
You must be signed in to change notification settings - Fork 1
sample finetuning script updated #1
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
Thamirawaran
wants to merge
1
commit into
main
Choose a base branch
from
update_sample_ft
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,290 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Prepare Dataset" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def convert_to_conversation(sample):\n", | ||
" instruction = \"You are an expert radiographer. Describe accurately what you see in this image.\"\n", | ||
" conversation = [\n", | ||
" { \"role\": \"user\",\n", | ||
" \"content\" : [\n", | ||
" {\"type\" : \"text\", \"text\" : instruction},\n", | ||
" {\"type\" : \"image\", \"image\" : sample[\"image\"]} ]\n", | ||
" },\n", | ||
" { \"role\" : \"assistant\",\n", | ||
" \"content\" : [\n", | ||
" {\"type\" : \"text\", \"text\" : sample[\"caption\"]} ]\n", | ||
" },\n", | ||
" ]\n", | ||
" return { \"messages\" : conversation }" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def datasplit(train_num, test_num):\n", | ||
" from datasets import load_dataset\n", | ||
" dataset = load_dataset(\"unsloth/Radiology_mini\")\n", | ||
" test_data = dataset[\"test\"].select(range(test_num))\n", | ||
" train_data = dataset[\"train\"].select(range(train_num))\n", | ||
" print(test_data)\n", | ||
" print(train_data)\n", | ||
" converted_dataset = [convert_to_conversation(sample) for sample in train_data]\n", | ||
" return converted_dataset, test_data" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Prepare model" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from unsloth import FastVisionModel # FastLanguageModel for LLMs\n", | ||
"import torch\n", | ||
"def load_model():\n", | ||
" model, tokenizer = FastVisionModel.from_pretrained(\n", | ||
" \"unsloth/Qwen2-VL-2B-Instruct\",\n", | ||
" load_in_4bit = False, # Use 4bit to reduce memory use. False for 16bit LoRA.\n", | ||
" use_gradient_checkpointing = \"unsloth\", # True or \"unsloth\" for long context\n", | ||
" )\n", | ||
" model = FastVisionModel.get_peft_model(\n", | ||
" model,\n", | ||
" finetune_vision_layers = False, # False if not finetuning vision layers\n", | ||
" finetune_language_layers = True, # False if not finetuning language layers\n", | ||
" finetune_attention_modules = True, # False if not finetuning attention layers\n", | ||
" finetune_mlp_modules = True, # False if not finetuning MLP layers\n", | ||
"\n", | ||
" r = 16, # The larger, the higher the accuracy, but might overfit\n", | ||
" lora_alpha = 16, # Recommended alpha == r at least\n", | ||
" lora_dropout = 0,\n", | ||
" bias = \"none\",\n", | ||
" random_state = 3407,\n", | ||
" use_rslora = False, # We support rank stabilized LoRA\n", | ||
" loftq_config = None, # And LoftQ\n", | ||
" # target_modules = \"all-linear\", # Optional now! Can specify a list if needed\n", | ||
" )\n", | ||
" return model, tokenizer" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Create Trainer object" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from unsloth import is_bf16_supported\n", | ||
"from unsloth.trainer import UnslothVisionDataCollator\n", | ||
"from trl import SFTTrainer, SFTConfig\n", | ||
"\n", | ||
"def prep_train(model, tokenizer, converted_dataset, num_step, num_epoch):\n", | ||
" FastVisionModel.for_training(model) # Enable for training!\n", | ||
"\n", | ||
" trainer = SFTTrainer(\n", | ||
" model = model,\n", | ||
" tokenizer = tokenizer,\n", | ||
" data_collator = UnslothVisionDataCollator(model, tokenizer), # Must use!\n", | ||
" train_dataset = converted_dataset,\n", | ||
" args = SFTConfig(\n", | ||
" per_device_train_batch_size = 2,\n", | ||
" gradient_accumulation_steps = 4,\n", | ||
" warmup_steps = 5,\n", | ||
" max_steps = num_step*num_epoch ,\n", | ||
" # num_train_epochs = 1, # Set this instead of max_steps for full training runs\n", | ||
" learning_rate = 2e-4,\n", | ||
" fp16 = not is_bf16_supported(),\n", | ||
" bf16 = is_bf16_supported(),\n", | ||
" logging_steps = 30,\n", | ||
" optim = \"adamw_8bit\",\n", | ||
" weight_decay = 0.01,\n", | ||
" lr_scheduler_type = \"linear\",\n", | ||
" seed = 3407,\n", | ||
" output_dir = \"outputs\",\n", | ||
" report_to = \"none\", # For Weights and Biases\n", | ||
"\n", | ||
" # You MUST put the below items for vision finetuning:\n", | ||
" remove_unused_columns = False,\n", | ||
" dataset_text_field = \"\",\n", | ||
" dataset_kwargs = {\"skip_prepare_dataset\": True},\n", | ||
" dataset_num_proc = 4,\n", | ||
" max_seq_length = 2048,\n", | ||
" ),\n", | ||
" )\n", | ||
" return trainer" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Start memory" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def init_mem():\n", | ||
" gpu_stats = torch.cuda.get_device_properties(0)\n", | ||
" start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)\n", | ||
" return start_gpu_memory" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Get Memory Status" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def get_mem(trainer_stats, start_gpu_memory):\n", | ||
" used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)\n", | ||
" used_memory_for_lora = round(used_memory - start_gpu_memory, 3)\n", | ||
" min_time = round(trainer_stats.metrics['train_runtime']/60, 2)\n", | ||
" return min_time, used_memory, used_memory_for_lora" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Get Response" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def get_res(model, tokenizer, test_data):\n", | ||
" FastVisionModel.for_inference(model) # Enable for inference!\n", | ||
" num = len(test_data)\n", | ||
" response = {}\n", | ||
" for i in range(num):\n", | ||
" image = test_data[i][\"image\"]\n", | ||
" instruction = \"You are an expert radiographer. Describe accurately what you see in this image.\"\n", | ||
"\n", | ||
" messages = [\n", | ||
" {\"role\": \"user\", \"content\": [\n", | ||
" {\"type\": \"image\"},\n", | ||
" {\"type\": \"text\", \"text\": instruction}\n", | ||
" ]}\n", | ||
" ]\n", | ||
" input_text = tokenizer.apply_chat_template(messages, add_generation_prompt = True)\n", | ||
" inputs = tokenizer(\n", | ||
" image,\n", | ||
" input_text,\n", | ||
" add_special_tokens = False,\n", | ||
" return_tensors = \"pt\",\n", | ||
" ).to(\"cuda\")\n", | ||
"\n", | ||
" from transformers import TextStreamer\n", | ||
" text_streamer = TextStreamer(tokenizer, skip_prompt = True)\n", | ||
" output_ids = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128,\n", | ||
" use_cache = True, temperature = 1.5, min_p = 0.1)\n", | ||
" generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)\n", | ||
" response[i] = generated_text\n", | ||
" return response" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Evaluate BERTScore" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"from bert_score import score as bert_score\n", | ||
"\n", | ||
"def evaluate(response, test_data):\n", | ||
" bert_p_scores, bert_r_scores, bert_f1_scores = [], [], []\n", | ||
"\n", | ||
" results = {}\n", | ||
"\n", | ||
" # Evaluate each response\n", | ||
" for i in range(len(response)):\n", | ||
" reference = test_data[i][\"caption\"]\n", | ||
" lines = response[i].splitlines()\n", | ||
" hypothesis = \"\\n\".join(lines[4:])\n", | ||
"\n", | ||
" # BERTScore\n", | ||
" P, R, F1 = bert_score([hypothesis], [reference], lang=\"en\", verbose=False)\n", | ||
" bert_p_scores.append(P.item())\n", | ||
" bert_r_scores.append(R.item())\n", | ||
" bert_f1_scores.append(F1.item())\n", | ||
"\n", | ||
" # Compute average scores\n", | ||
" avg_bert_p = np.mean(bert_p_scores)\n", | ||
" avg_bert_r = np.mean(bert_r_scores)\n", | ||
" avg_bert_f1 = np.mean(bert_f1_scores)\n", | ||
" results[\"BERT_Precision\"] = avg_bert_p\n", | ||
" results[\"BERT_Recall\"] = avg_bert_r\n", | ||
" results[\"BERT_F1\"] = avg_bert_f1\n", | ||
" return results\n" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "cr", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.12.3" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
[nitpick] Importing TextStreamer inside the loop could impact performance due to repeated imports. Consider moving this import outside the loop.
Copilot uses AI. Check for mistakes.